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PREFACE

This report, prepared by Gregory B. Baecher of NEXUS Associates, Wayland,
Massachusetts, with assistance from D. DeGroot, C. Erikson, and A. Pais, under
Contract No. DACW39-83-M-0067, provides details for the statistical analysis of
geotechnical engineering aspects of new dam projects. It was part of work done
by the US Army Engineer Waterways Experiment Station (WES) in the US Army Civil
Works Investigation Study sponsored by the Office, Chief of Engineers, US Army.
This study was conducted during the period October 1983 to September 1985 under
CWIS Work Unit No. Civis 32221, entitled Probabilistic Methods in Soil
Mechanics. Mr. Richard Davidson was the OCE Technical Monitor.

The report presents an introduction to statistical quality control as
applied to the construction inspection of engineered embankments. It is
intended to be introduction to potential users who have little or no background
in statistics. Examples in the report are drawn from actual construction
records of dam projects, and IBM-compatible microcomputer software supporting
this report has been developed under separate funding. 1Two other instructional
reports were prepared under the same contract, "Statistical Analysis of
Geotechnical Data," and "Error Analysis for Geotechnical Fnginecering," in
addition to a final report.

Ms. Mary Ellen Hynes-Griffin, Earthquake Engineering and Geophysics
Division (EEGD), Geotechnical Laboratory (GL), WES, was the Contracting
Officer's Representative and WES Principal Investigator for CWIS Work Unit
32221. General supervision was provided by Dr. A. G. Franklin, Chief, EEGD,
and Dr., W. F. Marcuson III, Chief, GL.
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STATISTICAL QUALITY CONTROL OF ENGINEERED EMBANKMENTS

PART I: INTRODUCTION

Background

Concern with quality and the control of manufacturing or construction
processes to assure quality underlie modern engineering and production.

Indeed, quality control is as old as engineering itself. On the other hand,
statistical quality control is relatively recent. In the United States,
statistical quality control first came into its own with the wartime production
effort of 1939-1945, the main impetus of this push having been Army Ordinance
and the War Production Board. The military influence has been important to the
introduction of statistical quality control to American industry.

Quality control in construction has characteristics which are both similar
to and different from quality control in manufacturing. The control of quality
in dam projects, especially concerning the placement and compaction of
engineered embankments, is critical to the safety and performance of the entire
project. Consequently, a well planned inspection program is considered
essential on any moderately large project. Current CE guidance for quality
control of engineered embankments is contained in EM 1110-2-1911, dated 17

January 1977. It is not statistically based, but is experience bhased.

Purpose
The purpose of this report is to provide potential users of statistical
quality control of engineered f1lls with an introduction to practical concepts,
definitions, and technigues. The report presents simple “echniques which are

intended for use by readers having limilted tamiliarity with statistical theory.
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The report does not attempt to survey the literature of statistical quality
control, but concentrates on a few chosen techniques that fill the needs of

geotechnical engineering practice.

General Description of Statistical Quality Control

The placement of compacted fills, like any manufacturing or construction
process, varies with time. The physical properties of soils being placed
varies in moisture content, gradation, plasticity and other ways; and the
process of placing soils varies, for example, in lift thickness, compactive
effort, and climatic conditions. These variations cause physical properties of
a resulting fill to differ from one point to another. A field inspection
program intends to ensure that--to an acceptible level of confidence--the
completed fill conforms to specified standards and thus will perform its
function acceptably.

Ideally, an inspection program could non-destructively screen all soil
placed in a fill and reject those materials with engineering properties not
conforming to specified standards of strength, deformability or permeability.

Such a program would guarantee perfection by detecting all parts of a fill

which were flawed. Unfortunately, cost and the lack of reliable testing

technology precludes this ideal program. Instead, typical inspection programs
congist of limited numbers of small-scale tests spread thinly throughout a
fill. The properties measured by most of these tests--for example, moisture
content and dry density--are merely surrogates for the engineering properties

of actual interest, although some engineering properties are also measured
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Statistical quality control uses simple probalility theory to develop
inspection sampling plans. These plans make efficient use of resources, and
can be related to a quantitative confidence in the quality of a finished

product.
Organization of This Report

This report is organized in six parts. After the introduction, Part II
summarizes fundamentals of probability and statistics which are necessary for
later presentations. Part III presents basic concepts of statistical quality
control including sampling theory. Part IV briefly reviews field control of
compaction operations. Part V presents quality control chart techniques.
Finally, Part VI discusses the design (i.e., planning) of sampling schemes for
field use. Following each chapter are tables and figures, and plates

presenting example calculations.
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PART II: FUNDAMENTALS

This section briefly reviews mathematical concepts underlying statistical

quality control.

.
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Probability Theory
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Probability theory is a branch of pure mathematics. It is logical and

internally consistent in the sense that all the mathematics of probability

T
o N
r

theory can be derived from a small set of axioms. 1In essence, the axioms
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-
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specify properties that "probability" must have, for example probability is a

L"Pr

real number between zero and one. Yet, nowehere do the axioms say what the

e
M
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concept of probability means. As a result many interpretations of what
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probability means are in common use.
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Frequency
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In statistical quality control, probability is usually interpreted to be

o
)
»

¥

"oy

the frequency of occurrence of some event in a long series of similar trials.

7

A trial is an individual occurence producing an outcome of some sort. For

[N lfl’l' '
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L

example, each individual lift of soil placed in a compacted embankment might be

considered a trial. The frequency of soils, having low moisture content among

-
.
(]

these lifts (i.e., among the trials) would be the probability of soil with low

E Yalid

moisture content.
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Subjective Probability

An alternative interpretation, common in geotechnical engineering, holds

that probability is a rational degree of belief., The probability that an
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important solution cavity exists in a limestone dam abutment is typical of
geotechnical problems which cannot be easily approached using the frequency f
definition of probability. Such probabilities have to do with
one-~-time events, past experience, and amounts of information. They are
personal and subjective. They are not related to frequencies, actual or
conceptual.
In this report the frequency definition of probability is used, for it is

appropriate to quality control problems. .
L]

Randomness

A key concept of the frequency approach to probability is randomness.
There are two places where the concept of randomness is important. One is the
description of a construction process as operating in a random manner; the 2

other is the design of a random sampling plan.

y o m. ..

A process is operating in a random manner when any part of the output may
be viewed as typical of the output as a whole. That is, when perturbations

show no discernable pattern. Usually it is not possible to demonstrate that a

~
process is operating randomly; rather, it is only possible to do the reverse, ﬁ

to demonstrate that a process is not random. This is done by showing that the
f; output of the process does in fact have a pattern to it. '
... . -
o A process that is operating in a random manner has elements or events with X

’; definite probabilites of occurrence. These probabilities may not be known, or
‘is may be known only to the extent that data are available from which to draw 3
LY
2 . X
estimates. Because the elements or events have associated probabilities, N

N
v, statistical theory and methods can be used to characterize them. :
a8
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The other place randomness is important is in the design of random
sampling plans. A random sampling plan is one in which sampled elements are
chosen with definite probabilities, but without a predictable pattern. 1In
large samples the relative frequency with which elements are sampled should
approach those probabilities; however, the collection of elements which make up

any specific sample reflect a chance distribution.

Conditional Probability and Independence

In quality control, probability is commonly defined as the relative
frequency with which a certain event occurs in a long series of similar trials.
For example, if there are N elements in a large set, of which ny share a common
property A, then the probability of an element within the set having property A
is,

na
P(A) = *E R -1-

If some of the elements also share a common property B, and if the number of

these elements is np, then the probability of property B within the set is,

3
zlu
.
i
N
)

P(B) =

Consider now that some elements in the large set possess both property A
and property B. Let the number of such elements be nape Graphically, the

number of elements possessing property A, property B, or both can be depicted
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as in Fig. 1.

If we consider only those np elements having property B, the
fraction of these also having property A is nap/np. This relative frequency is
called the conditional probability of an element having property A, given that
it is known to have property B. The conditional probability is denoted,

n
P(A|B) = %b -3-

b
By analogy, the conditional probability of property B given property A would
be,

n
p(BlA) = —2 -4-
n

a
The event that an element in the population possesses property A is said
to be independent of the event that the element possesses property B when the

probability of A is unchanged by knowing that an element possesses property B.

Mathematically, A is independent of B if
P(A|B) = P(A) -5

Knowing that the element possesses property B in no way influences the
probability that it also possess property A. If the event that the element

possesses property A is also independent of the event that it possesses

property B, then properties A and B are said to be mutually independent.
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Multiplication Theorem

Two theorems of probability theory are basic and often encountered in
statistical quality control. These have to do with the relationships among the
probabilities of distinct events, The first is the multiplication theorem.

The multiplication theorem states that the probability of two mutually
independent events occuring simultaneously is the product of their individual
probabilities. 1If elements possessing properties A and B within some large set
are mutually exclusive events, then the probability of an element possessing

both property A and property B is,

P(A and B) = P(A) P(B) . -6-

If A and B are not mutually independent, the more general form of the multipli-
cation theory states that the probability of them occuring simultaneously

depends on the conditional probabilities.

P(A and B) = P(A) P(B|A)

P(B) P(A|B) .

Addition Theorem

The addition theorem states that the probability of either one or the
other of two events A and B occuring equals the sum of the individual
probabilities of their occurrence, minus the probability that they occur

together.

P(A or B) = P(A) + P(B) - P(A and B) . -8B-
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In Fig. 1, if area is taken to represent probability, the addition theorem can
be considered simply a statement of geometry. The area contained by the
combination of events A and B equals the sum of their individual areas, less
one times the area of their overlap (i.e., P(A and B) ) which would otherwise

be double counted.

Frequency Distributions

The variability of data on production output, soil properties, or other
variables is conv aiiently summarized in a frequency distribution, the

fundamental tool used by statisticians.

Discrete and Continuous Variables

Fig. 2 shows the variability of standard penetration test blow counts
measured in 40 borings in a silty sand deposit at a dam site., Blow counts can
only assume interger values, and therefore are said to be discrete variables.
Fig. 3 shows variability of water content measured in R-tests on 73 specimens
of a compacted clay. These strength data may assume any real number value
within a broad range, and are therefore said to be continuous variables.
Quality control in geotechnical engineering must deal with both discrete and
continuous variables, and many methods of statistical quality control apply to

each in a similar way.

Histograms and Frequency Distributions

A convenient way to graphically represent scattered data is in a
histogram. A histogram graphs the number of measurements falling within

specific intervals of value as a vertical bar. Fig. 2 shows a histogram of SPT
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data. For obvious reasons, a histogram is sometimes called a bar chart. The
O
height of the bar above each interval shows the number of measured values }:f
Y
§~ ,
within the interval, and the sum of the heights of the bars equals the total o
o
number of measurements. Fig. 3 shows a histogram of R-test data. *-
1{ -’-
The histogram of Fig. 3 divides the data into intervals of 1%. The choice fjf
ol
of intervals is arbitrary, but the intervals should be of uniform width and Qﬁ
NS
N
have convenient end points. If too many intervals are chosen the general -
RS
picture of relative frequencies will not be obtained, while conversely, if too '}?‘
oo
A
few intervals are chosen the general picture will be blurred. A common :a:
o
rule-of-thumb is to use about 10 intervals. More detailed
Sy
discussion is presented in the report "Data analysis for geotechnical L{‘
RN
' Jl
engineering” (January 1986). S
o
A frequency distribution is constructed from a histogram by dividing each
gk'
vertical bar by the total number of measurements. This gives the relative DS
LS 0
\-:.\
frequency of observed value in each interval as a decimal fraction. The sum of :91
sia
the heights of the bars in a frequency distribution is 1.0. Fig. 4 shows the '
SrE
Ky
frequency distribution (right had side scale) corresponding to the histogram of Ay
h\ -
S
Fig. 2. Fig. 5 shows the frequency distribution corresponding to the histogram }%ﬁ
S
NSy
of Fig. 3. "
\J
Y
Cummulative Distribution h
ol
A cummulative distribution of discrete or continuous data is constructed "
by summing relative frequencies starting at the lower-value end of the data Q;
Yo
W
and proceeding toward the upper value end. The cummulative distribution -:i:‘
S
-. '.'
W
H_.
e
18 Y




denoted F(x) gives the fraction of measurements less than or equal to a

particular value,

F(x) = fraction of measurements < x.

T

Cummulative frequencies for the data of Figs. 2 and 3 are shown in Figs. 6

and 7. The cummulative distribution has the properties that,

N

lower limit (or -) F(x)

P Al A

upper limit (or +ow) F(x)

For discrete data the cummulative distribution is a step function increasing to

&

ny
.l
.’
-I
"
2%
-
b
-

the right. For continuous data the cummulative distribution is typically a

smooth S-shaped curve,

Importance of Frequency Distributions

Frequency distributions give a summary view of the variation in a set of

LI R S S g Y

data. The shape of the distribution suggests whether the data have any central

-
L

tendency, and if so, where along the x-axis the data are concentrated. The

P

y
“»

width of the distribution indicates the dispersion or scale of variation of the

2EL AL,
KRS

data.

Some frequency distributions have one point of concentration and are

thus called unimodal. Others have more than one and are called multimodal.

". PSS

Usually, soils data are unimodal. Multimodal distributions may indicate a

mixture of data from different soil types or different construction procedures,

P SR

that is, nonhomogeneous data.
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The frequency distribution also shows whether the variation in data is
symmetric or asymmetric, that is, whether high and low variations are evenly
balanced. For data that are asymmetrically distributed, large variation from
the central tendency of the data set are more frequent on one side of the

center than on the other. This is illustrated in Fig. 8.

Summary Statistics

Frequency distributions are convenient representations of data for visual
inspection, but often numerical measures of distribution characteristics are
useful for calculation or for setting standards. Numerical measures are
essential for developing quality control criteria and quality control charts.
The most important numerical measures pertain to the central tendency of data
and to dispersion.

The term "statistic" refers to any mathematical function of a set of
measured data. For example, given the measurements Xq, ..., Xy, any function y
= T(X1,+0s,Xy) is said to be a statistic of the data. The arithmetical average
is such a function, the largest value Xp;4x or the smallest value Xpin is such a
function, and so on. Any of these ways of summarizing the data would be called
a statistic. Obviously, there are an infinite number of statistics which could
be calculated from any set of data, but the most useful have either to do with
the central tendency of the data along the x-axis or to the dispersion of the
data.

Central Tendency

The most common measures of central tendency are the mean, median, and

mode. The mean is the arithmetic average of a set of data. The median is the
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[~ value for which half the observations are smaller and half larger. The mode is -
&
< the most frequent value (Table 1). )
F. The mean of a set of n data x = {X9, «.s, Xp}, denoted my, is defined as :'
] -
. the arithmetical average, "
» A
1 0
) m = - 2 X, 11~ T
X n . i r.
Y i=1 N
A %
The mean is the center of gravity of the frequency distribution along the S
2 :
) x-~axis, as shown in Fig. 9. I
- L U
i The median of the set of data x = {Xy, <., Xp}, denoted x3,5, is the ;,
[N
] value of x, which half the data are less than and half more than. The A
A "~
o] cummulative distribution evaluated at the median is 0.5, -
3 . :’
3 F(xp,5) = 0.5 -12- g
L .-
L !
» The median is the midpoint of the data, when listed in increasing or decreasing o
\l l.‘
- o
k. order. Common practice in the case of an even number of data is to define the r:
b, -
N ‘ol
S median as half way between the two middle data, that is, those of rank ("/2) '
2 and (/2 + 1). i
b The mode of the set of data X = {Xq, ..., Xp}, denoted xo, is the most "3
el r
\ often observed value. This is the value of x having the highest ordinate on g
;: the frequency distribution. f}
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Dispersion ﬁ:'
.: »
The most common measures of dispersion are the standard deviation, range, }d}‘
-
and inner yJuartiles. e
The Standard deviation of a set of data x = {xy, ..., xp}, denoted sy, is 2
defined as the root mean square variability of the data, T{?
// 1 o 2
S = — X. = m -13-
x 7/ n=1 .2 ( i x)
1=1
in which my, = the mean of the data. The denominator (n-1) rather than (n) is
used to correct a statistical bias. 1In estimating the standard deviation from

data, the mean is usually also unknown. Thus, the mean must be estimated from

s

the same data as the standard deviation. This causes the average squared

i

AN
V)
\

[
P

variability about m, to be smaller than it should be. On average, it is smaller

)

rrLr L,
[#

% %
-

by a factor (n-1)/n. Correcting for this error gives BEgn. 13.

..
R

LY

The coefficient of variation of a set of data is the standard deviation .

3

AR

»
DAL 1

divided by the mean,
QR = syx/my -14- R

The coefficent of variation is used to express relative dispersion.

The variance of a set of data, denoted Vy, is the square of the standard

deviation,
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In many statistical calculations the variance is a more convenient term
than the standard deviation, and is thus widely encountered in statistical
quality control. The variance is the moment of inertia of the frequency
distribution about my.

The range of a set of data, denoted r, is the difference between the

largest and smallest values,

Ix = Xmax ~ *min . -16-

The range has poor statistical properties in that it is sensitive to extreme
values in a data set, however, it is easily evaluated and therefore often
useful .

The inner quartiles of a set of data, denoted xy,325 and xg,75, are the
data values for which one-quarter of the data are smaller and one-quarter
largyer, respectively. The gquartiles may be found from the cummulative

distribution as

F({xg.25) = 0.25 -17a-

Fixg,75) = 0.75. -17b-
The interquartile range, denoted ry,g,

9.5 = (X0.75 - %0.25) -18-
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is less influenced by extreme values than is the range itself, but it is

correspondingly more troublesome to compute., Various summary statistics

applied to the R-test data of Fige. 3 are evaluated in Plate 1.

Association Among Uncertain Variables

When dealing with two or more soil properties the uncertainties in
estimates may be associated with one another. That is, the uncertainty in one
property estimate may not be independent of the uncertainty in the other
estimate. Consider the problem of estimating 'cohesion' and 'friction'
parameters of a Mohr-Coulomb strength envelope. If the slope of the envelope
to the Mohr circles is mistakenly estimated too steeply, then for the line to
fit the data the intercept will be too low. The reverse is true if the slope
is estimated too flat. Thus, uncertainties about the slope and about the
intercept are not independent, they are associated with one another.

The correlation coefficient for paired data x,y = {(x1,Y1),...,(xn,yn)} is

denoted pyy, and defined as,

1 i x iy
Pxy = 73 I | ) (=577 -19-
In effect, the correlation coefficient is equivalent to a normalized product
moment of inertia in solid mechanics. It expresses the degree to which two
~N
parameters vary together. The chrelation coefficient is non-dimensional

because deviations of x and y are measured in the same units as their
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respective means. The value of pxy may vary from +1 to -1. pyx, y=+1 implies a
strict linear relation with a positive slope; Px,y="1 implies a strict linear

relation with a negative slope; Px,y=0 implies no association at all (i.e.,

independence) .

Quick Estimates

Of ten one wants quick, approximate estimates of means, standard
deviations, or correlation coefficients from limited numbers of data. Some
shortcut techniques are available for this purpose. These provide economies of

time and effort while causing sometimes only minor losses of accuracy or

precision.

Shortcuts for Estimating the Mean

Rather than using BEguation 11, a quick and often good estimate of the mean
can be obtained from the median. The median is the middle value of a data set.
For example, if, say, five data are listed in ascending order xi, x3, x3, X4,
X5, the median is x3. For an even number of data, say n=6, the difference
between the two middle data is halved to give the median, that is (x3+x4)/2.
For data scatter which is symmetric about its central value and for small
numbers of data, the sample median is a good estimate of the true mean. On the
other hand, if the data scatter is asymmetric--for example, if there are many
small values and a few large values--the sample median is not such a good
estimator of the mean.

A second shortcut for estimating the mean 1s taking one-half the sum of

the largest and smallest measured values, (1/2)(xpax + Xnin)e+ This estimator
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is sensitive to the extreme values in a set of measurements, and thus

fluctuates considerably. It is not a good shortcut estimator and should only

be used with caution.

Shortcuts for Estimating the Standard Deviation

Rather than using Bguation 13, a quicker estimate of the standard
deviation from small numbers of tests can be made from the sample range
rx=(Xpnax—Xmin)+ The range is the span of data from largest to smallest. Like
the standard deviation, the range is a measure of dispersion in a set of data.
However, the relationship between the standard deviation and the sample range,
on average, depends on how many tests are made. To obtain a best estimate of
sy from the range of data ry a multiplier Ny is used which depends on sample
size (Table 2). The best estimate of the standard deviation is sy = Nyry (see
Plate 2).

As for the sample median, the range is a good estimator of the standard
deviation for small n and symmetric data scatter. Even for modest n it remains
fairly good. However, for asymmetric data scatter the range, which is strongly
affected by outliers, is not a good estimator of the standard deviation.
Fortunately, with the notable exception of hydraulic parameters such as
permeability, most geotechnical data display symmetric scatter. 1In the case of
hydraulic data a logarithmic transformation (Lee, et al., 1983) usually makes

the data scatter symmetric, and again the median and range become convenient

estimators.

26

o et e L B A IR SR NI SN S DT .
‘. --‘.' Ny '\ N . ‘ - ) ". ,‘ .- {- {xJ"‘-V .‘-pu,.l' .."-.‘ .l .7 \ .‘ \ .q .' -‘ .' .-

et e e

L}

V-

e

- v =
Dt R ]
P
- .

. ) “» R ¥
Wl O

L
PRE Ay AR S

LI R I S O Y
* P A
PRI T P

.- -

-.'-,"l.l!
D
et el

L, 8
r ‘,"

s,
.

.4

s 1 ]
- .
T.

1's

«

>
\
‘-
v
T
'y
"
L]




LAR Nat et S b S Ieb At e

Shortcuts for BEstimating the Correlation Coefficient

Calculation of correlation coefficients by BEqn. 19 can be time consuming
and tedious. A simple and quick approximation is obtained graphically from the
shape of the scatter plot of y vs. x. The method works well whenever the
outline of the scatter plot is approximately ellipical, and works even with
small numbers of observations. Using Chatillon's (1984) term and prodedure,
this is called the balloon method:

STEP 1: Plot a scatter diagram of y vs. x.

STEP 2: Draw an ellipse (balloon) surrounding all or most of
the points on the plot.

STEP 3: Measure the vertical height of the ellipse at its
center, h, and the vertical height of the ellipse at its

extremes, H.
STEP 4: Approximate the correlation coefficient as r = J/1 ~(h/H) .

An example of the method is shown in Fig. 10. The balloon method gives a

.,
L
“!
correlation coefficient of 0.81, whereas the correlation coefficient w
“
calculated by Egqn. 19 is 0.83. Empirically, the method works well for r>»J}.5. &
Y
Shilling (1984) suggests a similar balloon method for approximately @
estimating the correlation coefficient: 7
N
o
*
5

STEP 1: Plot a scatter diagram of (y-my)/sy vs. (x-my)/sy.

STEP 2: Draw an ellipse surrounding all or most of the points
on the plot.

STEP 3: Measure the length of the principal axis of the ellipse
having positive slope, D, and the length of the
principal axis of the ellipse having negative slope, d.

STEP 4: Approximate the correlation coefficient as r (D2-d2)/(D?+d~).

XYy Y vy v IY
P eEEr e O .

v
\H'i.r

This methods works about as well as Chatillon's. For the data of Fig. 10

Shilling's method gives r 0.80.

MR A
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Probability Distribution

For many problems in statistical quality control it is convenient to
approximate the empirical frequency distribution for some category of data by a
mathematical function. Surprisingly, a comparatively small set of mathematical
functions can be used to fit a broad range of frequency distributions
encountered in the field. By far the most important of these is the Normal or
bell-shaped distribution. Among other useful distributions are the log Normal,
Exponential, and 4-parameter Beta distribution, although many others exist.
The Normal distribution is discussed here, while parallel properties of the

other forms are given in Table 3.

The Normal distribution is represented by the equation

-20-

The distribution

in which my the mean of x and sy = the standard deviation.

is unimodal at my and symmetric (Fig. 11). The cummulative distribution of x

using the Normal equation is found from the area under the frequency

distribution up to x,

rX

4
-

The normal distribution is defined

F(x) f(x) dx. 21~

for -o<x<+», but the area under the

28
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distribution beyond 3 to 4 standard deviations from the mean is neglible.

The area under the Normal distribution expressed as a function of the

standardized variable

z = —= -22-
S

and calculated by BEqn. 21 are given in Table 4. Benjamin and Cornell (1970)
give examples. Numerically, these areas can be approximated by the series

expansion (Abramowitz and Segun, 1964),

F(z) = fy(x) (byt + bat? + b3t3 + byth + bst5) + ¢ -23-
in which,

by = 0.319381530 t = (1+px)~!

by = -0.356563782 p = 0.2316419

b3y = 1.781477937 le] < 7.5 x 1078 -24-

bg = -1.821255978

bg = 1.330274429

and fy(x) is the ordinate of the Normal distribution function evaluated at x.
The series expansion is generally more convenient than Table 4 for use with
computers.

If a construction process is operating in a random manner, and if qood
estimates of the mean and standard deviation are available, and if the fre-
quency of data are observed to be well modelled by a representable distribu-

tion, then forecasts can be confidently made about the future performance of

29
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that process. This is the basis for statistical quality control. For example,
if the process is observed to produce Normally distributed output, then a chart
such as Fig. 12 can be constructed which shows the process mean and envelopes
*+3sy about the mean. As long as the process continues to operate in a random
manner, and the mean, standard deviation, and frequency distributions remain
unchanged, then a confident forecast can be made that 99.7% of the output
measurements to be made in the future will lie within the +3sy bound (Figure
12). This forecast of 99.7% comes from Table 4. Such forecasts are considered

in greater detail in Parts V and VI.
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i Table 1

N Summary Measures of Frequency Distributions
A

N

N

o Measure Symbol Formula Comments
v

Central Tendency

AR

b b

o

Mean My i/n Y x4 center of gravity
o
3 Median X0.5 F(xg,5)=0.5 middle value
]
L]
-
:- Mode X0 xo=max f(xj) most frequent value
- 1
-~
R
‘J . :
..: Dispersion
N‘
o s s 1 2
g Standard Deviation sy ey y (x,-m ) root mean square
’ / variation
’v
D", 2
L variance Vy Sy moment of inertia
about my
»
L Range Tx Xmax~X¥min
"
~
3 Interquartile .5 X0 .75-%0 .25
o Range
o
o
~
o
e
.:.
I..
>
g 3
.
.
"
'A
.
’l .- - - - L Y ®m LI ~ ‘. oy AR ~ L v - . . A Sl -" “. u.' - e T
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" Table 2
<
Ratio of average range to standard deviation for samples from a
Normal frequency distribution.
n Multiplier N, n Multiplier N,
2 0.886 12 0.815
3 0.59 13 0.300
4 0.486 14 0.294
5 0.430 15 0.288
6 0.395 16 0.283
7 0.370 17 0.279
- 8 0.351 18 0.275 A
: 9 0.337 19 0.271 N
10 0.325 20 0.268 ~
\ ) -
: 1M 0.315 -
L
_________ o e e e e o e e o e e e e o e o
from Snedecor and Cochran (1980) -
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Table 3

Common Probability Distributions
(after Lee, et al (1983)

e o e e e e e e e e e e e o = = o e = v~ - T - = T - = — - —_—— = —— - - - o = - ——— ———— ———————

Type Formula Shape Comments
Uniform f(x) = i Mean = '/2a + b); Variance = !/)2(b — a)*
(b -a) Used when no reason to give other than
forasxsb equal likelihoods to possible vaiues of x.
Normal exp [_ 1 (X - g) '] Mean = u; Variance = o*
fix) = 2 a Most common distribution. Used unless
o2 another distribution is more applicable.
for o < x s ®
Lognormal exp [_ 1 ( Inx - Ez)] ﬁc lrandom variable y = In x is normally
2 o, distributed.
f(x) =
Xo,Vr
wherey = In x
for0sx=sw»
Exponential f(x) = A exp{—A x] = Mean = I/A; Vanance = I/A?

for0 s x s>

Used for particular physical situations when
positive values required, ¢.g., lengths of
joints in a rock mass. Also used to describe

' the time between incidents of events which
can be descnbed by a Poisson distribution
(such as ecarthquakes and floods). See
Benjamin and Comell (1970).

Beta _ (x —ap'(b - xpo! f _ a
f(x) = B = ap-" ™ ‘ ] Mean = a + ] (b ~ a)
where B (beta function) i ! Variance = (b ~ a ;’(&:a,))
= r“'"l:(( )- a) ol ' Extremely versatile distribution for matching
B : ! data over the range {a.b]. Vanation of
I'( ) = gamma function ! | parameters a and 8 gives wide variety of
forasxsb . v shapes. Contains as special cases the uniform
and normal distributions. Can be symmetrical
or skewed night or left. See Benjamin and
Comell (1970), and Harr (1977).
33
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Table 4 --

Cumulative Probabilities of the Normal Probability Distribution* (areas under the

Curvilat Lve

(from Benjamin and Cornell,

normal curve from —< to 7)

1970) .

frequencies ot the Mormal distribution

.00

.01

.02

.03

-04

.05

.06

.07

.08

.09

NN NN -t pmt Pus pmd - bt b s
BWO =D VBV ON BWN=D ODABDN W=D

NN N
- - BN B R )

W W WWww
W= O

.5000
.5398
.5793
6179
.6554

.6915
.7257
.7580
.7881
.8159

.8413
.8643
.8849
.8032
.9192

.9332
.9452
.9554
.9641
9713

.9772
.9821
.9861
.9893
.9918

.9938
.9953
-9965
.9974
.9981

.9987
.9990
.9993
.9995
9997

.5040
.5438
.5832
.6217
.6591

-6950
.7291
7611
.7910
.8186

-8438
.8665
-8869
.9049
.9207

.9345
.9463
.9564
-9649
-9719

.9778
.9826
.9864
.9896
.9920

.9940
9955
.996¢€
.9975
.§982

.9987
9991
9993
.9995
-9997

.5080

.5478

.5871

.6255
.6628

.6985

.1324
.7642

.7939
.8212

.8461
.8686
.8888
.9066
.9222

19357
.9474
.9573
.9656
.9726

.9783
.9830
.9868
.9898
.9922

.9941
.9956
.99617
.9976

.9982

.9987
9991
.8994
.9895
.9997

5120
5517
.5910
.6293
.6664

.7019

13517
.7673
7967

.8238

.8485
.8708
.8907
.9082
.9236

.9370

.9484

.9582

.9664
.8732

-9788
.9834
.9871
.99a1
.9925

.9943
.3957
.9968
.99717
.89983

.9988
.9991
.9994

-9996
.9997

.5160

.5557

.5948
.6331

.6700

.7054
.7389
7704
7995
-8264

.8508
.8729
-8925
.8099
.9251

.9382
9495
.9591
.9671
.9738

.9793
.9838
9875
.9904
9927

.9945
9959
.9969
.8977
9984

.9988
.9992
9994
.9996
-9997

.5198
.5596
.5987
.6368
.6736

.7088
.7422
L1734
.8023
.8289

.8531
.8749
.8944
9115
.9265

.8394
.9505
.9599
.9678
.9744

.9798
.9842
.9878
.9906
.8929

.9946
.9960
.9970
.9978
.9984

.9989
.9992
.9994
9996
.9997

.5239
.5636
.6026
.6406
6772

.7123
.7454
.7764
.8051
.8315

.8554
.8770
8962
.9131
.9279

.9406
.9515
.9608
.9686
.9750

.9803
.9846
.9881
.9909
.9931

.9948
.9961
.9971
.9979
.9985

.9989

9992
19994
.99386
19997

.5279
.5675
-6064
.6443
.6808

L7157
.7486
L7794
.8078
.8340

.8577
8790
.8980
29147
9292

.8418
.9525
.9616
.9693
.9756

.9808
.9850
9884
9911
.9922

19949
.9962
.9972
.9979
.9985

.9989
9992

9995
9996
9997

.5318
5714
.6103
.6480
.6844

.7190
.7517
.7823
.8106
.8365

.8599
.8810
.8997
.9162
.9306

9429
.9535
.9625
9699
.9761

.9812
.9854
.9887
.9913
.9934

.9951
.9973
.9980
.9986

.9990
.9993

.9896
.8997

9963

9995

.5359
.5753
6141
6517
.6879

7224
.7549
1852
.8133
.8389

.8621
.8830
.9015
9177
.9319

-9441
.9545
.9633
9706
.9767

9817
.9857
-9890
.9916
9936

-8952
.9964
.9974
.9981
.9986

9990
.9993
-9995
.9997
.9998

4

1.282

1.645

1.960

2 326

2.576

3.090

3.291

3.891

4.417

F (2]

.90

.95

975

-99

-995

.999

.9395

.999

95

R REEEES

2(1 - Fuz]

.20

.10

.05

.02

.01

.002

.001

.000

1

.00001

RTRTRR
) - ¥ a
AL

~ ..: -.. .F:'-":":‘.‘-'."'#:'q’:-."-'-l‘:.('\..'- -“;-r:\-.;(.:'...._\‘_ .'_\ _" .'-’ -( .‘ -,\.-
E, A N A " Mo A RaBl aXo N X

g

<

vy

3
A

r T ox
Y & N
o~

{

PR g )
L4 %
AL

of

o s
MY

T
*

SISy

....
. a2 LI 3
s
O
\
l..

y,”
1
s e e

‘]
Py

I‘. l~

1R

e )AL
P AL

l"".

A
s

v'--
5y

roroe .
PR
1) l{l'."‘

’-."
N,

3
L)
0

> '1/ L] %- 1'::,':' a 'l. .l-;l'
LR S S AL A Tt
ﬂJ.“‘ﬁ e

v “»
LA
.

o

o

:' ﬂ\ l-' l" ‘. ys
™ -

“'.:5‘\.
b 720 2 '@

T

<



3w _n_» ]

A

P ALY

-

SUBJECT: Example calculations of Summary statistics for (R-test) data.

3 A"

I. PROBLEM:

Calculate summary statistics from experimental R-test data on
soil strength.

SOLUTION:

1. Measured data:

Measured values of R-test data as shown in Figure 3.

2. Measures of central tendency:

mean -- My = (1/n) Ixj = 32.6%
median -- X.5 = 32.1%
mode -- X0 28.5%

2,

L]
s

3. Measures of dispersion:

Tag 4 Y4

standard deviation --

variance -==-

range -- {Xmax = Xmin) =

fractiles -- 27.4%

XO.SO = 32.1%
.75 = 36%

interquartile range -- rg.,5 = (xXg,75 - X9,25) =

-
~
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%
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Y
N
%
o
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PLATE 2

SUBJECT: Shortcut estimates of summary statistics.

2

1 ‘f -‘.

'

PROBLEM:

Estimate summary statistics using shortcut methods and compare to accurate
calculations.

I1. DATA:

N X,
f‘,;;_-{{-

Measured Strength (kPa): 38, 51, 43, 39, 48, 45, 42, 45, 49.

v
o

III. ESTIMATE MEAN:

AN

Shortcut Method Using Median

my = median of xjy
= 45 kPa

By Equation 2

1 1
my = ;‘ L Xy = 6 (470 kPa) = 44.4 kPa

Iv. ESTIMATE STANDARD DEVIATION:

Shortcut Method Using Range

(Xpax = X*min)
51 - 38 kPa
13 kPa

N from Table 1 (for n=9): 0.337

sy = (0.337) (13)
= 4.4 kPa

l"'.l

By Bquation 3

YR RY,
.‘ l"v' .




Figqure 1 -- Venn diagram showing relations amony probabil:ties of simple
events.,
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Part III: CONCEPTS OF STATISTICAL QUALITY CONTROL

Quality Assurance and Quality Control

The terms quality assurance (QA) and quality control (QC) are used in

special and differing ways by different organizations. 1In this report,

Quality assurance means an inspection program aimed at assuring that soils
placed in a fill meet specifications.

Quality control means an inspection program aimed at monitoring
construction performance to give early warning of changes that affect
quality and thus to provide a basis for controlling the process.

Quality assurance programs prescribe a procedure which when consistently
applied to inspection data yield a specified risk of accepting lifts of given
quality. A QA program provides a decision procedure. Quality control, on the
other hand, provides a way of estimating lift properties and the changes in
those properties with time. A QC program provides a monitoring scheme. QA
provides a rule by which the owner's risk of accepting poor quality
construction is guaranteed and balanced against the contractor's risk of having
good quality construction rejected. ¢C provides a tool by which owner and
contractor alike can make efforts to maintain a uniformly high quality
product.

Sampling

Measurements are made on a set of soil specimens or at a set of locations

in order to estimate the properties of a soil deposit or an engineered

structure as a whole., Statisticians call this set of measurements a sample.
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An individual piece of soil is called a specimen to distinguish it from the
concept of a statistical sample.

The s01l deposit or structure whose properties are of interest is called
the target population (Fig. 13). A population in statistics is simply a large
(or infinite) collection of elements. Not all of the elements in the target
population may be accessible for sampling. Those that are accessible are said
to compose the sampled population. From this sampled populatinn a finite
number of elements are selected for testing and this set is called a sample.
If the way this sample is chosen satisfies certain rules, the sample 15 said to
be a probability sample. Statistical methods can the be used to quantify the
uncertainty in estimates from the sample about properties of the sampled
population. Statistics is powerless to say anything about the correspondence
between sampled and target populations, however, as this is a geological or

engineering yuestion.

Scientific Sampling

The concept of scientific sampling, or probability sampling, is central to
quality assurance and control. A scientific sample is planned according to
statistical principles. The importance of scientific sampling is that it
allows quantitative statements about the uncertainty in parameter estimates
which result from sampling. Other sampling schemes--as for example,
instructing an inspector to purposely seek out areas in a fill that appear
poorly compacted--certainly have merit in special circumstances, but they do
not allow the quantitative analysis which has come to underlie modern

engineering practice,
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To be a probability sample, three criteria must be satisfied: (1) sample
points must be chosen randomly, (2) all elements in the sampled population mus:
have a non-zero chance of being sampled, and (3) different probabilities of
each element being sampled must be compensated by weighting.

If these two criteria are satisfied--and only if they are satisfied--
statistical methods can be used to determine uncertainties properly associated
with parameter estimates. This means that for statistical methods to be used,
some form of random sampling is necessary. Purposive sampling, by which an
inspector consciously selects for testing those elements that appear of poor
quality, is intuitively appealing and can provide important information, but it
cannot form the basis for statistical quality control. From a purposive sample
there is, (a) no way to assign quantitative confidences to estimates of soil
parameters, (b) no way to explicitly review an inspection program after the
fact, and (c) no way to establish a defendable level of quality assurance,

People also talk about having an inspector seek out a 'representative’
sample. This, too, may have merit in special circumstances, but it does not
produce a sample from which quantitative conclusions can be drawn. No
individual sample is representative of a sampled population. A sample contains
specific measurements which can never precisely mirror the subtlety of
variations in the sampled population. On the other hand, a sampling plan can
be made representative, 1f designed by scientific principles, in that it
affords every element within the sampled population an eqgual chance to

influence estimates that are made.
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Random Sampling

Scientific sampling requires that every element in the sampled population
have a non-zero chan.e of appearing in the sample. It does not require these
chances tc a.l. be the same, only that the relative probabilities are known,
This conldition requires that elements be selected from the sampled population
in a random way. Lacking a random procedure, the assumption that each element
has a non-zero chance of being sampled cannot be made, and the relative
probabilities of different elements being sampled cannot be assessed. The use
of a random procedure attempts to avoid any form of association between the
selection of elements for the sample and the properties of the elements that
are being sampled. Such association is called a bias.

Randomization means selecting elements of a sample in such a way that the
two conditions of probability sampling are satisfied. Randomization can be
accomplished many ways. A conceptually simple but operationally clumsy way is
to pick sampling locations by a random number generator or table of random
numbers (Table 5). If performed faithfully this scheme gives each element in
the sampled population an egqual chance of being sampled. Another way to
provide randomization is to layout measurements on a fixed grid and then

randomly locate the first point.

Sampling Plans

An essentially infinite number of sampling plans for quality assurance or
quality control satisfy the properties of probability sampling. These are all
randomized sampling plans in the sense that the exact elements which are

sampled depend on the outcome of some chance event.
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A more convenient sampling plan is to layout sample points on a grid, and

then locate the grid in the field by randomly selecting its first point (Fig.

14b). Only one pair of random numbers needs to be chosen from which all of the
sample points are determined. The disadvantage of a grid pla. compared to
purely random plans is that any spatial periodicity in the compaction process
may bias the outcome. An advantage compared to the purely random plan,
especially with small sample sizes, is that uniform coverage of the site is
assured,

To provide coverage while at the me time limiting the possihle effects
of periodicities, stratified random sampling plans are sometimes usei., I'lsing a
stratified plan the sampled area is first divided 1nto a regular darray of
squares or rectangles (F1g. 14c) and then a sample point is randomly located 1in
each,

Another common plan is nested sampling. Nested sampling uses a pre-fixed
grid of sample points with vdarying spacings (Fig. 1430, The first point 15
located randomly as in grid sampling ani from that poirat 1il the rest gre
specified. The principal nse of nested sampling 13 for =srimating Spe-1al

aspects of the spatial structure of s01ls data, namely the utocorrelation

U h 4 8

function or variogram, (see the report, “"Statistical analy-=i= 5 voate chinl
data", Instructional Report GL=37). The dio f nested

control or gquality assurance ot compacted fills 15 moase
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operation is large compared to the incremental cost of testing. Clumped

sampling involves two stages. In the first stage a number of seed points are
randomly chosen. In the second stage a number of sampling points are chosen in
the vicinity of each seed point. At both the first and second stage the

sampling plan can be purely random, gridded, stratified, nested, or so forth.

The sampling plans reviewed here are typical of the very large number of
possible sampling places. In practical situations the constraints of a parti-
cular prouject may dictate that a specialized plan be developed. This is
accepted practice as long as the principles of probability sampling are adhered
tu. These principles dictate three things, (1) that sample points be chosen
according to some random process and not be affected by the intuition of an
inspector, (2) that all elements within the population to be sampled have a
non=zero chance of being sampled, and (3) that if the probabilities of each
#lement being sampled are not all the same, these differences in probability be
appropriately coapensated for by weighting when the data are analyzed.

For most gquality control and quality assurance sampling in geotechnical
“ngineering the probabilities of elements within the sampled population bheing
sampled are all the same.  Therefore, for these sampling plans the problem of
welgtiting sanple onteomes 15 seldom of concern.s For those cases where
welghting s necsessary, Cochran (1964) provides techniques ani practical
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: a single test may yield niore than one numerical result--for example, water )
v content, dry density, plasticity index, and so forth--but for now nothing is )
v
j lost by considering only a single scalar outcome. Moy
W

If another sample of n specifications is now taken from the same lift of »f

N soil, however with the specimens taken at slightly different places, another .
P, ..
e set of n numerical data will result. Each of these will differ somewhat from -4
o 2
. -

. their counterparts in the first sample, because the soil itself varies from one -

+ 3

spot to another and because there are a number of instrument or operator S

L

.

effects which influence test results. This variation in numerical results from :

l-

L one sample to another is called sample variation. Statistical techniques allow b

f such sample variation to be predicted and dealt with in a quantitative way. \f
8 3
N -
A The sample mean (Egn. 11), sample standard deviation (Eqn. 13), and other ‘.
LS 4
Y _ .
" summary measures calculated from the test results Xq,...,X; are simply ‘
—

- mathematical function of the data. If the data vary from one sample to ‘e
N4 .
5 another, so will the summary measures. '}
Ad ‘f
: 4
»

’ Sampling variability of the Mean )
N =
- The sample mean my is calculated by Eqn. 11. If many tests are made e
., N
-l (i.e., if n is large), variations in one test result within an average will be .
A Y

. offset by variations in others, and as a result my should be fairly close to
u‘" .'_\
: the actual mean of the sampled population my. In this report the actual ™
N N
; sampled populations mean is denoted by a prime, my', as compared to the sample :
+ [ St
2 o mean which is denoted without a prime, my. On the other hand, if few tests are ﬁ.
:‘\. ‘
N made (i.e., n is small), variation in test results will not have as much -
Fad S
f:' ) » ¥
- opportunity to average out, and as a result the sample mean may deviate ~9
) "od
. considerably from my'. This sampling variability is the critical factor in :,
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deciding how many tests must be made in a quality control or quality assurance o3
NN
program. VY
If the standard deviation of the sampled population is known and if the K
individual measurements are independent of one another, then the means of jf;
individual samples each of size n will vary with a standard deviation of LY
Fat
-
Smy=  Sx / /n. -25- :}i
=
For example, Fig. 15 shows a histogram of sample means, each corresponding to a }:;
‘-l
different sample of size n = 5 taken randomly from the SPT blow count data in 3
e
Fig. 2. The standard deviation of the sampled set of data is 4.4 bpf, while BN
S
o
o M
the standard deviation of the variability of the sample means is 2 bpf = 4.4 \$H
\l
bpf/ n. 1If plotted as a frequency distribution, the variability of the sample .
- .\
e
means will be approximately Normally distributed, almost without regard to the -zﬁj
- \d’ -
e
N
shape of the frequency distribution of the sampled population. The -::;
F‘~h-
approximation to the Normal distribution becomes better as n becomes larger. \éi.
AN
s
. . b
In the more common case the true standard deviation of the sampled ;5:
’\ -I'-'
. , R A . e
population, sy', is not known, and thus the sample standard deviation, sy, is :zpa
S
used in equation 25 to approximate the variability of my about my'e. Using sy -
SO
'rt..l"‘
rather than sy,' underestimates the variability in my, however, because the r:&::
PN
A
estimate of sy differs somewhat from the true standard deviation sy'. To N
)
L™
overcome this limitation a standardized mean is used, ,;;’
]
Me = My
t = —_—————— —D -
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in which my and sy are the sample mean and sample standard deviation, and mxl
is the true mean of the sampled population. If the value t is estimated
separately from a large number of samples, each sample containing the same
number of observations, the frequency distribution of t over these many
separate samples will have a standard deviation of 1.0 and a shape known as
Student's-t distribution. The Student's-t distribution looks much like a
Normal distribution, but with thicker tails and a higher mode. That is, the
Student t has somewhat more of what statisticians call kurtosis than a Normal
distribution does. Areas under the Student curve are given in Table 6, and may
be approximated by series expansions, as given by (Abramowitz and Segqun (1964).
The shape of the Student's-t distribution and thus the areas beneath it depend
on the number of measurements within a sample, n. This enters Table 6 as the

degrees-of-freedom parameter y = n-1.

Sampling Variability of the Standard Deviation

Just as the sample mean varies from one sample to another, so do other
summary measures such as the sample standard deviation or sample variance.
Unfortunately, the statistical results for the variability if the sample
standard deviation and variance are not as simple as those for the sample mean.
For samples taken from Normally distributed data, the sample standard deviation

varies approximately with a standard deviation of,

S ~ 2n =27~
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in which n = the sample size (Snedecor and Cochran, 1980). The sample

“, » '

2

variance, sxz, varies approximately with a standard deviation of,

s ., = s 2 /2 . ~28- ot

Sy’ x ¥ n-1 At

MRS

32
LS )

Similar results are available for non-Normally distributed data, but are more Ti.
;\;s

complicated. Most basic statistics textbooks discuss these results (e.g., N
LAY

Snedecor and Cochran, 1980). ::::
Cattu

Sampling Variability of the Range

Because the sample range ry =|xmax - xminl is easier to calculate than the
standard deviation, it is often preferred as a measure of variablity in
programs of quality control. For a sample taken from Normally distributed data

the frequency distribution of the relative range

Wy = Iy/Sy -29~

across samples of size n is tabulated in Table 7.

In-Control vs. Out-of-Control Processes

The above discussions are based on the concept of a construction process
operating in a random manner. When a process is operating in a random manner
any part of 1ts output may be viewed as typical of the output as a whole and
perturbations in the process show no discernable pattern. A construction
process vperating in a random manner and producing few sample outcomes which

deviate substantially from its average output is said to be "in-control." Fig.
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16 shows a chart of compaction data for a process operating in-control. The
NN
variations in these data appear to behave randomly without trend or pattern. :¢:
R
Few construction processes operate in-control for significant lengths of 'az
..; X
time, and even when a process is in-control minor deviations from randomness '
.\-.‘
have to be overlooked. The statistical theory of quality control and quality 5:}
Tt
: . . A
] assurance is based on the idea of randomness in process output, and thus every ol
y PRIS
;‘_
effort should be made to assure that non-random factors are not present.
',
Whether a process is in-control also depends on the level of detail with PR
4
which the output is scrutinized. Obviously, variations in the output of a :f
construction process are not truly random. At some level of detail are all :“
o
explainable by physical arguments. The notions of randomness and a process t’:!
-
(NN
being in-control have to do with engineering decisions and the cost t*:=
u_:’.:_
effective-ness of further reduction in output variability. Attempts are made
to identify and eliminate all major sources of variability, and what remains N
'.::\
and is not cost effective to further reduce is operationally handled as if it :::
LAY

were random variation. As long as our statistical models can be successfully
used to portray this residual variability and to characterize uncertainties
which arise from it, then the process is for engineering purposes

"in-control."

~ -

»

When the variability in the output of a construction process deviates from .};

N

randomness, that is, when significant trends or patterns begin to appear in the }\]‘
t,':J‘

output, statistical models no longer adequately capture the important features @
5

of the variations and the construction process is said to be out-of-control. .}:|
T

The principal use of the control charts of Section 5 is to obhtain early warning Fﬁ
u‘:‘v.

that a process 1s going out-of-control, and to identify steps that might be ®
S
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taken to bring the process back in-control. Examples of changes that could
cause a fill and compaction process to go out-of-control include a change in
borrow materials; change in rainfall; change in construction superintendent,

operator, or equipment; and so on.
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-- Table of uniform [0,1]
(from Cochran, 1977).

random numbers

“. '}‘.' v

10 27 53 96 23
28 41 50 61 88
34 21 42 57 02
6181772323

7150 54 36 23
64 85 27 20 18
59 19 18 97 48
82 82 11 54 08

54 31 04 82 98
83 36 36 05 56
80 30 03 30 98
53 28 70 58 96
90 74 80 55 09

04 1412 15 08
39 71 65 09 62
05 24 67 70 07
44 07 39 55 43
14 53 90 51 17

26 78 25 47 47
94 76 62 11 89
84 97 50 87 46
42 34 43 39 28
52 01 63 01 59

1§ -

~ 5

611518 13 54 16 86 20 26 88

AR
"l" .

56 08 25 70 29
30 19 99 85 48
67 69 61 34 25
46 76 29 67 02
55 51 33 12 91

75 31 62 66 54
53 56 68 53 40
7520 80 27 77 78 91 69 16 00
65 95 79 42 94 93 62 40 89 96
05 02 03 24 17 47 97 81 56 51

84 80 32 75 77
01 74 3959 73
08 43 18 73 68
43 56 47 71 66
92 34 86 01 82

91 76 21 64 64
00 97 79 08 06
36 46 18 34 94
88 98 99 60 50
04 37 59 87 21

44 91 13 32 97
37 30 28 59 85

> 2

.

Pl A )

K

29 95 81 83 83
12 38 92 79 43
59 24 48 40 35
48 68 64 71 06
50 41 06 94 76

79 88 01 97 30
14 85 11 47 23
50 03 42 99 36
61 65 70 22 12
81 83 17 16 33

94 21 78 55 09 72 76 45 16 94
3441924571 0923 70 70 07
87 68 62 1543 53 14 36 59 25 54 4733 70 15
47 60 92 10 77 88 59 53 11 52 66 25 69 07 04
56 88 87 59 41 65 28 04 67 53 95 79 88 37 31

63 62 06 34 41
78 47 23 53 90

v

A 5N

£
Ay S v

14

26 879329 7709616784
12 93 64 28 46 24 79 16 76
225276 23 24 70 36 54 54
67 63 47 54 83 24 78 43 20
14 55

06 69 44 77 75
14 60 25 51 01
59 28 61 71 96
92 63 13 47 48
44 88 01 62 12

02 57 45 86 67 73 43 07 48
3154141317 486211 60
28 50 16 43 36 28 97 85 99
63 29 62 66 50 02 63 45 38
45 65 58 26 51 76 96 59 86 57 45 71 44 67 76

49 34 88 73 61
08 58 25 58 94
09 71 17 24 89
53 33 18 72 87
45 56 00 84 47

39 65 36 63 70 77 45 85 74 13 53 36 02 95
73 7198 16 04 29 18 76 51 93 96 38 63
7220562011 726571 79 57 48 72 66 48
75 17 26 99 89 37 20 77 31 97 05 73 51
37 48 60 82 81 30 48 38 75 37 78 48

68 08 02 80 83 71 46 89 17 95 56 03 46 97 74 06 56 17
14 23 98 61 70 52 01 84 02 98 19 41 18 83 99 47 99
49 08 96 21 25 27 99 07 41 08 74 39 91 4196537872
78 37 06 08 63 61 62 39 68 95 23 00 62 56 12 80 73 16
37213417 96 83 32 84 60 3477 9115797458

58 84 86 50 60 00 25
06 95 12 4557 09 09
03 09 43 12 74 49 14
56 63 38 78 94 49 81
2703 7886 72 04 95

14 29 09 34 87 83 07 76 58 30
58 43 28 06 49 52 83 47 56 91
10 43 67 29 80 62 80 10 80 21
44 38 88 39 86 97 37 00 95 01
90 69 59 19 85 39 52 85 07 28 37

TRL N5 Y

95 44 84 95 48 46 45
36 59 14 93 87 81 40
8411 2462 20 42 31
93 82 75 70 16 08 24
70 93 8581 56 39 38

41 47 10 25 97 05 31 03 20 26 36
91 94 14 63 75 89 11 47 31 56 34
80 06 54 18 18 94 06 98 40 07
67 72 77 63 08 31 55 24 33 45
59 40 24 13 26 88 86 01 31 60

l' 'I .'.)l %y

e e
5

[ P A

3731 7126350371
57 44 59 60 10 39 66
62 11 08 99 55 64 57
21 60 10 92 3536 12
94 82 96 88 57 17 91

05 90 35 89 95 61 16 96 50 78 13
44 43 80 69 98 68 05 14 90 78 50
61 81 31 96 82 57 25 60 46 72 60
42 88 07 10 05 98 65 63 47 21 61
77 94 30 05 38 10 99 00 12 73 713
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Table 6 -- P(.ercel.ltage points (i.e., double tail areas) of the Student-t ;:
distribution. For areas under a single tail, divide by two. :‘"‘ ;
From Duncan, 1974, -‘f:
‘e
SN
0
wy ¥
"
"N
FaaP:
.-'_’:.-
;‘_ Ly
I..Q-
sy
I
o
e
J‘:'.r‘
Probability (P). o,
ot
v]|]:-9 -8 7 ‘6 -5 ‘4 -3 -2 -1 ©05 02 01 001 N
1{-158 -325 -510 - 727 1 000 1-376 1-963 3-078 6-314  12-705 31-821 63-657 636 619 - f-:'
2| -142 -289 -445 617 -816 1-061 1-386 1-886 2920 4303 6965 9925 31-598 L
3| -137 -277 -424 -584 -765 .978 1-250 1-638 2-353 3-182 4:541 5841 12941
4| 134 -271 -414 -569 -741 941 1-190 1-533 2132 2-776 3-747 4604 8610
5] .132 267 -408 -559 -727 +920 1-156 1-476 2.015 2:571 3-365 4-032 6859
6| -131 -265 -404 -553 718 906 1-134 1-440 1-943 2-447 3-143 3707 5959 o
71 -130 -263 .402 -549 711 <896 1-119 1415 1-895 2:365 2-998 3-499 5405 -
8| 130 -262 -399 -546 .706 -889 1-108 1397 1.860 2:306 2:896 3-355 5041 -
9] -129 .261 -398 -543 -703 883 1-100 1-383 1-833 2-262 2-821 3-250 4781
10 | ©129 -260 397 -542 -700 -879 1.093 1.372 1-812 2.228 2-764 3-169  4-587 -
11| -129 -260 .396 -540 -697 876 1.088 1-363 1-796 2.201 2718 3-106  4.437 o
12 | -128 -259 -395 -539 -695 -873 1-083 1-356 1-1782 2:179 2-681 3.055 4318 S
13 | -128 -259 -394 -538 -694 870 1-079 1-350 1-771 2-160 2:650 3-012 4221 ]
14 | -128 -258 -393 -537 -692 -g68 1-076 1.345 1.761 2.145 2624 2-977 4140 i
15 | -128 -258 -393 -536 -691 866 1-074 1-341 1.753 2.131 2-602 2-947 4073 ok ¢
o
16 | -128 -258 392 -535 -690 -865 1-071 1-337 1.746 2.120 2-583 2.921 4.015 :
17 | -128 -257 -392 534 -689 -863 1:069 1-333 1.740 2110 2-567 2-898 3965 Dy
18 | -127 -257 -392 -534 -688 -862 1-067 1-330 1-734 2.101 2.552 2878  3.922 N
19 | -127 -257 -391 533 .688 -861 1.066 1-328 1.729 2.093 2539 2-861 3883 N
20 | 127 -257 -391 533 -687 -860 1-064 1-325 1-725 2.086 2-528 2845 3850 e
TN
21 | -127 257 391 -532 686 -859 1.063 1:323 1:721 2080 2518 2831 3819 oG,
22 | -127 256 -390 -532 -686 858 1-061 1-321 1-717 2074 2508 2819 3792 Oy
23 | -127 256 -390 532 685 -858 1-060 1319 1-714 2.069 2-500 2-807 3767 S
24 | 127 256 -390 531 -685 -857 1059 1318 1.711 2064 2-492 2.797  3-745 ey
25 | -127 256 -390 531 -684 -856 1-058 1-316 1.708 2.060 2-485 2787 3725 A
26 | 127 -256 -390 531 -6B4 -856 1058 1:315 1-706 2056 z-473 2779 3707
27 | -127 256 -389 531 684 -855 1.057 1-314 1-703 2052 2:473 2771 3690
28 | -127 256 -389 -530 683 -855 1-056 1313 1701 2048 2467 2763 3674
29 | 127 256 389 530 683 -854 1055 1-311 1699 2045 2462 2-756 3659
30 | 127 256 389 530 683 -854 1055 1310 1697 2042 2457 2750 3646
40 | 126 255 388 529 681 851 1050 1303 1.684 2021 2423 2704 3551
60 | -126 254 387 527 679 848 1046 1296 1671 2000 2390 2660 3 460
120 | -126 -254 386 526 677 845 1041 1289 1658 1980 2358 2617 3373
o | -126 253 385 524 674 842 1036 1282 1645 1960 2326 2576 3291
62
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h Table 7 -- Percentage points of the distribution of relative range o
w_=r_[s_ for small samples from Normal distributions ';‘-
. X' °x Y
" (?rom Duncan, 1974), RN,
\ kg (
i’.
S
[ B
o™
N
Y
)
¥
2 "
’. Meanw/| ¢’y Probability That w Is Less than or Equal to Tabular Entry {:
3 n or or ; -
: d; ds 0.001 | 0.005 | 0.010 | 0.025| 0.050 | 0.950 | 0.975| 0.900 | 0.895 | 0.999 o>
s
. ¥
2 1.128 0.8525 0.00 0.0t 0.02 0.04 0.09 2.77 3.17 3.64 3.97 4.65 ¢
y 3 1.693 0.8884 0.06 0.13 0.19 0.30 0.43 3.31 3.68 4.12 4.42 5.06 :::_
B 4 2.059 0.8798 0.20 0.34 0.43 0.59 0.76 3.63 3.98 4.40 4.69 5.31 -
" -] 2.326 | 0.8641 0.37 0.55 0.66 0.85 1.03 3.86 4.20 4.60 4.89 5.48 o
v -
:: 6 2.534 0.8480 0.54 0.75 0.87 1.06 1.25 4.03 4.36 4.76 5.03 8.62 S
7 2.704 0.833 0.69 0.92 1.05 1.25 1.44 4.17 4.49 4.88 5.1% 5.73
8 2.347 0.820 0.83 1.08 1.20 1.41 1.60 4.29 4.61 4.99 5.26 5.82
_\ 9 2.970 0.808 0.96 1.21 1.34 1.55 1.74 4.39 4.70 5.08 5.34 5.90 .
Py 10 3.018 | 0.7197 1.08 | 1.33 | 1.47 | 1.67 | 1.86 | 4.47 | 4.79 | 5.16 | 5.42 | 5.97 .-:‘;
s 11 3.173 0.787 1.20 1.45 1.58 1.78 1.97 4.55 4.86 5.23 5.49 6.04 \-
.:: 12 3.258 0.778 1.30 1.55 1.68 1.88 2.07 4.62 4.92 5.29 5.54 6.09 :
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, PART IV -- INSPEUTION OF ENGINEERED
. —
The construction of engineered embankments or fills mist be ~ontroiled 1n
)
order to ensure that zones Wwlthin the f1ll are satisfactorily homogenegs and
that average properties Lf the 111 ~Hnfsmm %o speci1fied requirament s, Ha 31
3
construction control 15 ac compilsned hy visual tnspection, Tomplemerred tvyoa
systematti s progran of sampling A4nt resriag simed at verifying fract tne jaallty
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Thus, a sampling inspection program has two goals: to control homogeneity

and to control average properties., Which, if either, of these goals is more

important depends on the specific situation. 5;
)
a5
"
0\’

Target Properties vs. Sampled Properties Ay
N
o~

The properties of greatest interest to the engineering performance of an

TN
g

embankment or fill are strength, deformability, and permeability. However,

v
.

these target properties are cumbersome or expensive to measure directly, so

W S ar
v

other more easily or quickly measured properties are used in their place. By

sy
‘I\‘

far the most commonly sampled properties in construction inspection of fills

L

are compaction water content and dry density. The fact that these are

correlated to strength, deformability, and permeability makes them useful

v
(4

surrogates.

5 e Y Y
s

LV T T W T, " s
»

Tests for Water Content and Dry Density g

. A variety of tests are available for measuring water content and dry .
y “~
. density. Water content can be measured directly by oven drying a specimen and -~
. “~

. determining change in weight. Dry density can be measured directly by

P

ascertalning the weight and volume of a specimen, as for example, with a sand

“»

cone density test,

.' N 5
PP NI

Water content and dry density can also be measured indirectly using

. 3 : Ly
7 various Jdevices, for example by nuclear gage. These indirect tests are RS
o .
7 R X . S
¢ typrrally less expensive than direct testing but also less accurate. 1In -
2, W
certain odses economies can be gained by combining a small number of direct !

R A

- tests witiv a larger number of Indirect tests.
. escriptions ot field density and water content tests are given in Lambe -
X (19 ), sherard, ot al. (1963), Engineer Manual EM1110-2-1911, USBR (1960), and
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AASHO and AST™ standard test procedures. r:
f
e
Compaction Specifications w3
Specifications for compaction quality are most often placed on water ::?
?
content, dry density, or both. For example, water content of the fill at time 2
of compaction might be specified to be within #2% of standard or modified _:f
Proctor optimum. Dry density might be specified to be at least 95% of standard e
2 or modified Proctor optimum. These are performance specifications. -
Specifications are also placed on coupaction equipment and procedure. For
', example, a specified number of passes with equipment of specified minimum
4
'« capacity may be required in addition to some specified water content range. As P
N an example, on the USAE Carters Dam Project, Georgia, compaction specifications 3}
n ‘\.: '
3 for the imperious core required as-placed water contents to be *2% standard or t:
‘ modified Proctor optimum and the fill to be compacted by a minimum number of sy
passes using specified equipment. If placed materials were found to have water o
contents more than #2% from optimum, the cost fell to the contractor to :;:
moisten, dryout, or remove the material. If placed materials were within water ::r
o
content specifications and had been properly compacted, but were less than 95% t:;:
- .
standard or modified Proctor optimum density, then the cost fell to the owner e
to undertake additional compaction or to remove the material. These are : .
compliance specifications. P
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PART V: QUALITY CONTROL CHARTS

Quality control techniques are used by both the contractor and the owner
to monitor the progress of construction, and thus to quickly identify changes
in soils or operational procedures before these changes adversely affect
construction quality.

Quality control differs from acceptance sampling in that (C has the
principal purpose of identifying changes in construction materials or
procedures before those changes adversely affect construction quality. When a
change is detected, efforts are made to find assignable causes and fix them.
Acceptance sampling, in constrast, has the principal purpose af assaring that
soils placed in a fill meet specifications. Hased on acceptan-e sampling

results solls dare either acceptad or rejected as part Hf a4 [uality assaranee

programe.
:I’Ah_o'_\ iy )‘T o »Vn;r.rA :_1~ ‘,hfiAr_'f“
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many chance canses whith produce varitation in sn1l density, molstiare tontent,
or otner properties are similar to the many forces which cause a tossed coin to
land up heads or tarls.  Such variations follow predi ~fable laws of
probabilyty.
on the other hani, other variations (n quality are dae to assignable
T e [hosuch cases a stgnifrcant fraction of the varitability can be traced
T S e Al se, Hy 1tientitying this assitgnable canse and taking steps to
.I
: reduce rs o pntlaence, anitormity of tne construction process can be improved.
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regularity. Therefore, when the process is out-of-control an effort is made
to find assignable causes.
34 Suppose that samples of fixed size n (= number of tests) are taken from
lifts being placed in a compacted fill. From each of the n tests a measured
A"
o value of some soil property results. From these n values certain statistics
o are calculated, for example the sample mean my=(1/n)Ix;j, standard deviation
Sx=/{(1/n-1) (nj-my) , or range ry=(Xmax-Xmin)- Being sample results, these
-.‘
Y statistics will be subject to fluctuation from one sample of n to another.
“w
o~
- : . .
o However, 1f the variations are due to chance causes, the frequency
.l- R X , . :
distributions of the sample mean, standard deviation, range, or other
It
:; statistics are known to follow the regular distributional forms discussed in
n_":
;: Part I1. For example, the sample mean my 1s known to have a frequency
- fistribution 1n repeated sampling which is approximately normal (exactly normal
}}_ 1f the so1l properties neing tested are themselves Normally distributed). The
™~ ‘
7. Average value ot the sample mean my, equals the real mean my', while the
standart teviata on, sy, ot my egaals Sy one “rom Table 4, oanly 0,2% of the
.. damprd e means shoald Tie sutsaide a0 35,0 anterval about my'.,
v,
o Note o, that st atistres ot thae sample data, o as far example, the sample
e
ey rosarp e staatac e st e, are denate ] here without g prame, Vor
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Control Charts and Control Limits

A control chart is a device by which the state of statistical control
(i.e., that a process is in-control) is operationally defined. It is used to
attain control in a new process, and check that control is maintained in an
ongoing process.

A control chart is constructed by plotting values of my, Sy, ry Or other
sample statistics as a function of time or of some other dimension for ordering
sample results (e.g., lift sequence number). The sample statistics are plotted
against the vertical axis, time or other dimension against the horizontal axis.
A horizontal line is drawn through the actual mean my', which could be fixed by
specification or calculated from dat«. Two other horizontal lines are drawn,
one above mx' and one below my', showing limits which are highly likely to
contain the sample results, These are the control limits: the upper control
limit (UCL) and the lower control limit (LCL). PFig. 16 shows a typical control
chart for individual compaction data.

If sample values are plotted for a substantial range of production and
time, and 1f all these valuves fall within the interval formed by the UCL and
LCL, and 1f the data show no cycles or runs, then it is concluded that the
construction process is in-control for that particular attribute. 1If the data
do not contorm to this pattern, then the conclugion is drawn that variability
1n the constracted product 1s not «xplainable by chance factors alone and an

Assl Thab e s 3) 18 sought.

Froaunoa Statist g ocpAan's view, control o limits o are relarod to o the testing of
5Pt LSt v et e gy It S5arpie resilts oosntorm with wha® woril 1 have heen
precty cred by oassaming han e caases for ovariability, then the hypothesis ot
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random variation is reasonable and accepted. If the results would be

improbable based on the hypothesis of random variation, then that hypothesis is

L PN A

rejected. The choice of control limits, and the associated probability of

VLSS,

their being exceeded, is arbitrary. For example, the probabililty could be set

at 0.01, implying control limits of * 1.65 standard deviations; or at 0.002,

rardle l' ’ l‘."_

Ya o, 0 0, 0ty

implying control limits of + 3.0 standard deviations. Narrowing the control

e

limits means increasing the risk that the hypothesis of random variation will

A

be rejected when actually it is true. For example, with limits set at + 3

»

AN

deviations there is a chance of 0.002 that a process actually in control will

[ A

fixed at (mx'+3sm)4 while a lower control limit (LCL) is fixed at (mx'—3sm)

Usually the standard deviation of my, that is, sm , 1s estimated from the data
b

.
AR

as sm =Sy /V/pn. Sometimes Sy itself is specified as a target homogeneity.
X

Fig 17 shows an m-chart for compaction control data on a dam project.
To control current production, a sample of size n is taken periodically

from material placed in the fill and the average my of the n test results is

plotted on the control chart. 1If all the my lie within the UCL and ICL, the

[N %

2 PSS

construction process is concluded to be in-control. If any my falls outside

4 a8

B

either the UCL or LCL the process is deemed to be out-of-control. When the

vy

.I 'I -l .l

deviation outside one of the control limits is adverse, for example, when mean

compacted density falls below the LCL, specific cause for the variations are

o

looked for with the intent of improving the construction process and thus the

product of that process. When the deviation beyond a control limit occurs on

P A

the favorable side, for example, when the mean compacted density exceelds the

A

e d

%
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UCL, either no action is taken or the causes of this unusually high gquality are

Lol S
r '.
v

searched for in order to learn how to permanently improve gquality.

-.' v"‘
" o

Probabilities of individual sample means exceeding the UCL or LCL can be

e
ML

found by reference to Table 4. For soil property data which are themselves
' ~~

[N

m - m
Normally distributed the probabilities from Table 4 are exact for ~i———§£ .

s N
X T

For soil property data that are not Normally distributed--presuming that the i
distributions are not bizarre--the probabilities of Table 4 are still

approximately correct even for sample sizes as small as 3.

Control Chart for Sample Range r,

A control chart on the sample range,

Lx = Xmax ~ Xmin ~-30-

shows variation in the range as a function of time. The central line on an R- .{\J
SN

o o . , , . O

chart is fixed at the empirical average range in past production, or in special -}\¢
R

circumstances is set by specification on acceptable variability of the ﬁ?\
compacted fill. The control limits are usually set at + 3s,, in which s, is T
the standard deviation of the sample range. Both the average range and the o
N

A

standard deviation of the range can also be related to the standard deviation fg:
. . N t . . .
of the soll properties being samples s, . Fig. 18 shows an R-chart for SR,
N

Yora
compaction control, )
e

o

~

NN
®
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If data fall inside the UCL and LCL on an R-chart, the construction
process is deemed to be in-control with respect to homogeneity. When a single
data point falls outside the UCL or ICL the process is deemed to be out-of-
control with respect to homogeneity. In the latter case actions are taken to
find assignable causes., A sample result above the UCL is usually considered
adverse and efforts should be made to find out the cause of the variability and
fix it. A sample result below the LCL's usually considered favorable and
efforts can be made to find out what is being done so well so that the
construction process can be improved.

Because an m-chart and an R-chart control for different aspects of
quality, a process may be in-control on one but out-of-control on the other.
An m~-chart controls for the mean or average quality of the compacted fill. An
R-chart controls for the uniformity with which compacted materials
are being placed. Compacted soils may be on average sufficiently dense, bhut
unacceptabely heterogeneous. On the other hand, the soils may be on average

sufficiently uniform but unacceptably loose.

Cumulative Reject and Related Charts

Unlike most industrial applications of quality control charts, construc-
tion involves a single project with a alearly identified beginning and eni. As
a result, certain quality control charts are very useful in construction even

though they are not wildely used in the factory. One of these is the cumulative

reject chart,

Sa
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Cumulative Reject Chart

%

b The cumulative reject chart plots the cumulative numhers of fesrts having

"

: results outside specitied limits, Against time test sequen~e number, or a
similar 1indicatmr of test order. Fig. 19 shows cumulative rejecst Jats for g
compaction inspection program on the imperious core of a rock fill dam. The

‘5 upper figure (a) shows cumulative rejects Jdue to inadequat~ densities. The
middle (b) and bottom (c) figures show numerical values Hf water content and

) dry density, respectively, for the rejected tests. These are plotted alonag

!

: with the cumulative reject test so that the cause of reiectinn or any frent in
the cause can be readily seen.,

In Flig. 19 cumalative reject is plotted against test segquence npumber.  As

; a result, the slope of the curve gives the rate of rejects at a1ny e int dnring
the project. 1In all, 1175 inspection tests were made on *he 1mperisus © ore, ot

E which 38 were rejected either for being outside 2% Procter praimiae witey

: content or tor having iry density less than 95%% Procter optimien.  The ragse of

) rejects for the entire pro'e~t 15 3371175 = 3w.

:' While the average rate of reject tests was 3% For the entire oper 1 vl
core, Jduring early phases ot construction the rate wis mach higher gnd 1y
Lafer phases She rate was mich Lower, At the start of the o R

i recection rate reachied a4 n b ot aboat 30w, gqradisiy fareerin oo ot
2% near conpietione s gradual st ste gty decrease Dot e 0 ,
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control.

compaction properties.

tighter control.

reduced.

As construction progressed the process was brought into

The mean quality was low and there was considerable veriability in

The mean quality was better maintained and the variability

The cumulative reject chart can be used to monitor a number of subtle

changes 1n the construction process. Fig. 20 shows schemacically the eftect o
4 malor “hange 1n the construction process, for example, a change of
contractor, change of equipment, or change of borrow material. The change
causes 1 pbredak 1n the smooth progression of the learning curve, usually
starting another learning cycle,

Carefal lnspection ot Flg. 19 shows two such breaks. The first occurs at
1thout rest nanber Hd.  The reject rate for tests 1 to 50 1s about 8%, Frum
Lrest >t abot ) tme raject rdte 1ncreases sharply to about 3W0%.  In fact,
Taes r o rhe Leariing eftect tne rate of rejects should be expected o desrease
LS e se et ractlcn o proceesis. A retrospective analysis shows tnat o4
™ Coteeet Y T ity Ut Wit Thange b e BOrr oW SO0r e wops o ke
4 ty ST, a1 vl e W s kel fraom theres oo, Betgase e YT I
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Moving Average, Standarid Deviation and Range Charts

Convenient accessories to the cumulative reject chart are tle
average, moving standard deviation and moving range charts. These
smoothed information on changes 1n constriction output from which
more easily identified.
In a standard m-chart the averages of samples of n tests are plotted as
function of time or some other ordering index. A different set of n tests 13

used for each point, and the assumption is made that each test is independent

of every other. Thus, each plotted sample mean my is also independent >f the

sample means of adjacent to it, presuming that the construction process is
1n-control and operating in a random manner (Note: in practice the problem of
serial correlation in the construction process itself sometimes arises, but
siuch autd>enrrelation is beyond the scope of the present report). The use of
n-harts typlcally presumes that many data are being collected and that
irosiuotion output is fairly high,
“.r nany cases 1n construction the rate of testing 1s more modest or
procends more slowly. Often a considerable time is required to
«wivvidual lifts that are to be tested. In these cases a moving
"4y p= nmnare convenient than the standard m-chart. The moving
“astructed in the same way as an m-chart, but it provides a
1= now the construction process may be changing.
17+ cdalmulated nver windows of fixed size n. For a long
<t ,ese,%x), an averaeq 1is calculated for the first n

iver g 15 calculated for the next n o data
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distribution, as illustrated in the above example, may indicate a change in the

construction process which needs to be monitored or controlled.

Cumulative Sum (CUSUM) Chart

Changes 1n the output of a construction process are sometimes more quickly
detecl=d hy monitoring the change from one test to the next rather than the
absolute value of the test. For example the changed conditions which appear in
Figs. 19 and 23 become apparent earlier when increments of test results are
plotted.

The most common way to monitor increments 1s by the cumulative sum or
cusum chart, The cusum chart uses trends in the (X data to identify process
changes, ratner than treating the data from each lift by themselves., The major
advantage ot casum chiarts over m= or r=chdarts (sometimes Shewhart charts after
the Sstatistioran who tirst proposed them) are that “hanges are 1dentified more
111 ckly, particularly modest changes, and that the tine or loacation of the
chean e can be nrecy ety determined,

Ao chart of o iegaenety of T Xg, e e Xy ees 15 nnstracted by
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As long as the construction process 1s 1n aontrod,
should lie on a straight line. sSome individual xy will

in which case the cuswumn curve will rise; and some 1niov,

L4948 8%% Y]

) N .
My , in which case the cusiwm curve will tall, THLs, 1

wander up and down about the zero axis.
. L]
since m, Ls usnually not known 1n practice,
Actial valine of ., fnocal ulating the casam. Thae
Xy =m) 1n whi-~h S oA Tonsrtant roughiy eequal
mighe be s0ightly less than 'n:,", the torns g
than 2ero. TYois, The casim ocarve Wil orise at
Line of positive 3l ope, T the extent that o
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PART VI: QUALITY ASSURANCE BY ACCEPTANCE SAMPLING

The purpose of quality assurance is to test fill as it is placed and to {b¢
make decisions on whether to accept or reject the fill as conforming to oS
standards. If the fill is rejected, further compaction could be made, the fill
could be removed, or some other course of action could be followed pursuant to
contractual arrangements between contractor and owner. Acceptance sampling is
the quantitative tool used to make the accept/reject decision. The objective

of acceptance sampling is not to control quality, but to make decisions.

Structure of An Acceptance Sampling Plan

.
1’

A simple acceptance sampling plan is structured in the following way: a?j
. . . RN

I. A random sample of size n is taken from the materials being e
tested. O

[2

%,
Py

T

II. The results of the n measurements (X{,...,Xn) are summarized
statistically in an index z. For example, z might be the sample Al
average (1/n) xj. l

L

a

III. The index z is compared to a critical value z*, and if z lies on ;rt

the correct side of z* the materials are accepted as AT
satisfactory. ®

::-C::-.

The questions in designing an acceptance sampling plan are how large to make :::?
. . . : . NS,
the sample size n, how to summarize the resulting data in an index z, and how ey
to select a critical value z* such that quality is assured without unduely - >.
TN

LR

Sl

increasing the cost of construction.

The more stringent the acceptance criteria become, the greater the

" v s

"‘.' ,
et
O slslsrtd s

likelihood of rejecting fill which is in fact satisfactory. The less

A
1} . *
SP
A ]

stringent, the greater the likelihood of accepting fill that is in fact not

NN
o, A AN
»

Py

satisfactory. The problem of acceptance sampling is that, for a given size
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sample, reducing the likelihood of accepting poor material usually means

o

increasing the likelihood of rejecting good materials, and vice versa. To

~
) .‘-’5 ,‘1 ") ',

L0

simul taneously reduce both the likelihood of accepting poor materials and the

o

likelihood of rejecting good materials, the sampling plan must be made more

'-;:;.‘

discriminating. This usually increases inspection cost.

Y4

Buyer's Risk and Seller's Risk

5

[ ™ e ™,

In specifying an acceptance sampling scheme two risks are balanced,

(a) The owner's (buyer's) risk of accepting material of poor quality,
and,

Pl N ol

(b) The contractor's (seller's) risk of rejecting material of good
quality.

.
’

ALSY

Decreasing one of these risks typically increases the other.

P A

Test results from an acceptance sampling program are variable whether the

PN

L Y

fill is truly of acceptable quality or not. Because of this variability, it

'I l‘,.."'
vy % v N Y

may be, for example, that the lowest compaction test results on an acceptable

Jatalala
s

fill give lower dry densities than the highest test results on an unacceptable

-
A

fill. p

.U

; The top of Figure 28 shows a hypothetical frequency distribution of test

: results taken from an acceptable fill. Suppose that the criterion for
accepting the fill as meeting specification is that test results be above yg*.

*

: Because test results are always variable, some fraction of the tests results

'

S will always fall below the acceptance criterion and thus lead to rejection,

g

< even though the fill might in fact be acceptable. This fraction is

= proportional to the area under the frequency distribution to the left of Yd*'

ey

;' The probability of the test result lying beneath yd*, and therefore the

)

~

»,

l.'
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probability of improperly rejecting an acceptable fill, is called the

seller's risk.

The bottom of Figure 28 shows a hypothetical frequency distribution of

test results taken from an unacceptable fill. Some fraction of these test
results will always fall above the acceptance criterion yq* and thus lead to

the fill being accepted when in fact it should be rejected. This fraction is
proportional to the area under the frequency distribution to the right of Yd*°
The probability of the test result lying above yd* and therefore leading to

acceptance of an unacceptable fill is called the buver's risk.

For a fixed sampling plan there is an explicit trade off between the
buyer's risk and the seller's risk in selecting the acceptance criterion Yd*'
Higher values of yq" reduce the buyer's risk but raise the seller's risk; lower
value of Yd* raise the buyer's risk but lower the seller's risk. This trade
off can be seen in Fig. 28.

The buyer's risk and the seller's risk can be controlled simultaneously
only by making changes in the sampling plan, not just in the acceptance
criterion. The purpose of statistical acceptance sampling is to allow the
buyer's risk and seller's risk to be quantitatively determined for a given

sampling plan and to be appropriately balanced by designing the sampling plan.

Inspecting for Fraction Defective vs. Inspecting for the Mean

Acceptance sampling typically addresses one or both of two aspects of
quality:
(a) The average property of the fill, that is the mean; or,

(b) The fraction of individual values within a fill which are below some
standard, that is, the fraction defective,

102
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Each aspect of quality may not have the same importance in a particular

application. For example, the potential for internal erosion of a fill depends
on soil densities at the least compacted places. Conversely, the strength of a
fill to resist large slope instabilities more often depends on average soil
densities. Acceptance sampling plans differ depending on which aspect of

quality is to be assured.

Operating Characteristic Curves

v,
«‘a
.
PN

P

The functional properties of an acceptance sampling plan are usually o
summarized by an operating characteristic or OC curve. The operating g?
characteristic relates the quality of the fill being sampled--for example its Sﬁ
mean density or the fraction of the fill with out-of-specification water gf
content--to the frequency with which the sampling plan leads to a decision to Sﬁ
accept. As in Fig. 29, the horizontal axis usually shows the actual fill L
quality, while the vertical axis shows the probability of acceptance. The
Buyer's risk and Seller's risk are read directly from the OC curve
corresponding to the definition of good quality and poor quality materials., o
For example, the probabilities corresponding to the two frequency distributions ;..
of Fig. 28 are shown as the Buyer's and Seller's risk, respectively, on Fig. i:
L. 29. In principle, the better the acceptance sampling plan, the steeper the 0OC -
o -
E curve in the vicinity of the contract-specified quality of the fill. A steep E;
af OC curve reduces both the Buyer's risk and the Seller's risk. ;
The shape of the OC curve depends on the design of the acceptance sampling i;
plan, and can be used to make economic decisions about the reasonahle extent ;:
and cost of sampling. Usually, the easiest way to steepen the 0OC is by E
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increasing the sample size and thus sampling cost. The remainder of Part VI
discusses the relation between a sampling plan and its corresponding operating
characteristic, and how a sampling plan can be designed to achieve a desired

OC curve.

Acceptance Sampling to Give Assurance on the Mean

This section considers acceptance sampling plans the intent of which is to
assure that average properties of placed materials meet specification. Two
types of specificatinn are considered, single limits and double limits. Using
single limits the concern is that the average properties are, for example,
greater than some specified value. For instance, average compacted dry density
is to be greater than 95% standard or modified Proctor optimum. Using double
limits the concern is that the average properties are between two values. For
example, average compaction water content is to be within #2% standard or
modified Procter optimum.

The sub-sections first consider the case of known or specified material
variability, that is, known standard deviation. This case is mathematically
easier than the more general case of unknown variability, and does sometimes
occur in practice. The more general case of unknown variability is treated

afterward.

Single Limit, Standard Deviation Known

Suppose specifications call for soil with an average or mean compacted dry
density of mx' = 120 pct. Suppose also that the dry density of the compacted

fill is known to have a constant standard deviation of sy' = 15 pcf. An
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acceptance sampling plan to give assurance regarding the mean is constructed

such that material actually having a mean of at least 120 pcf (i.e., good

h.’

material) will be rejected no more frequently than some fixed value a. As

N 3
g 2

before, a is the Seller's risk, Simultaneously the sampling plan is

b

LANNNS

constructed such that material whose mean is substantially less than 120 pcf
(i.e., poor material) will be accepted no more frequently than some other fixed
value 8. BAs before, B is the Buyer's risk, For the acceptance sampling plan
to be operational, a specific definition of what is meant by "substantially
less" must be adcpted. 1In Fig. 29, poor material is defined as being an
average density less than 110 pcf.

The procedure for acceptance sampling with one fixed limit on the mean
the following

Te Take a random sample of n tests

2. From the results xj...Xp calculate the mean

My={1/n)Ixi.
Compare my with a specified acceptance value m*;

ifm3> m*, then accept
ifm < m*, then reject.

The OC curve for a sampling plan regarding the mean shows the probability

. . ' .
of acceptance as a function of the true mean value of the material. My , as in

Fig. 29. The OC curve is constructed by using the standarliized variable Z,,
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The denomination in BHyn. 31 is the standard deviation of the sample mean

(1/n) Ix; over repeated samples (cf., Egn. 25). That is, the denomination

5

expresses the variabhility one naturally expacts among different sets of tests.
The numerator is the separation between the acceptance criterion in * and the

true average quality of the soil mx'. The variable Zy is the number of

; standard deviation separating m* for mx', and thus can be used to calculate the
) fraction of samples in which the deviation of the sample mean for mx' is given
N than m*-my'.
z When the property being tested has a Normal frequency distribution, the
. frequency distribution of z, over multiple samples is exactly Normal. Yet,
.
.; even when the property being tested does not have a Normal frequency
; distribution, the frequency distribution of z; is still approximately Normal.
" The probability of accepting material with actual mean my' is found by
) comparing z, with Table 4 to find the corresponding frequency with which a
X standard Normal variable exceeds zy.
Consider a sampling plan with an acceptance mean m*=105 pcf and sample
S size n=6. Under this plan, n=6 tests are made, the mean my of the results is
_E calculated, and if m, » 105 pcf the material is accepted. If my < 105 pcf the
s
N material is rejected.
The OC curve for this plan is calculated by computing the quantity 2n, in
5 Eqn. 31 and looking in Table 4 to find the probability of a standard Normal

variable having an absolute value larger than Zyp. Because the standard Normal
distribution is symmetric about Z=0, the area under the distribution above +2 :}l

is the same as the area under the curve below -Z. For example, if the true

b W N S
S"-' o
z NPPPX

0
e

-
At

106

~. - "."
tﬁ-'c-n.
a'a ey

b

\(\{‘.
[N

» w e
NN
P
ECRE &
AN |

"

(RGN
N
Y0. 70

“n

LI i AT e ‘v*-'._
T o Lo L R T K ROAY

> "t
f~ \l'.'I

AN

oL SN

‘\‘. '. .::‘. AT N AT '-.'\\:.'.




e

~
")
P O-
oY
.
£
3",
mean were my' = 120 pcf and sx' = 15 pcf, then zy = (105 pcf -120 pcf) /(15 <,
pcf/vV¥6) = -2.4. Thus, the probability of accepting good material with the {j
"o
~
specified mean density 120 pcf equals the probability of a standard Normal ;¢‘
variable being algebraically greater than -2.4, that is, about 0.01. Other KA
points on an OC curve such as that in Fig. 29 are evaluated by substituting T
corresponding values of my' into Byn. 31. ;t
An acceptance sampling plan with regard to the mean is designed by N
.-—..
specifying a Seller's risk a and a Buyer's risk . The Seller's risk is the :\:
- -
probability of rejecting fill which in fact is of better quality than some :%ﬁ‘
decided upon acceptable quality level (AQL), or "good" material. The Buyer's =
risk is the probability of accepting fill which is in fact of poorer quality
than some decided upon unacceptable quality level (UQL), or "poor" material.
The AQL and UQL are engineering decisions and must be quantitatively specified -
to give meaning to the notions of good and poor quality material. The sampling -]
plan is defined by a sample size n and an acceptance level m*. The procedure :43
to find (n,m*) is: S
o
1. Specify :*,
N
N
a = Seller's risk “n
3 = Buyer's risk "t
m, = Acceptable quality level of mean (AQL) KA
m, = Unacceptable quality level of mean (UQL) -:}
S~
2. Find standard Normal variables (Table 4) with frequencies of not -:.
being exceeded equal to (1-a) and B8, ;\{
Zi.yq = standard Normal variable with frequency of not being f_;
exceeded (1-a). dh‘
o
zg = standard Normal variable with frequency of not being :a.
exceeded 3. a
L
L) \. \
o
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3. Write the two equations
b,
’.
L g
>~ *
< m - m
-2 = =2 + Sets Seller's risk -32~-
' /n 1-a
sx/
.
-
y
* 1]
< m-m
¢ u ;
; = -z s Sets Buyer's risk ~33-
' s_/Yn B
* X 2
-, S,
M. B
¥ 4. Solve simultaneously for n and m*. T
s v
I -
= An example is shown in Plate 3 and Figure 29. s
' :a-
y A \.
o Are Compaction Data Normally Distributed? :ﬁ
- -
. ~
R -
:: Experience has shown that empirical data on water content and dry density :ﬂ
‘. -
for compacted soils are often well approximated by Normal distributions. .
. '\'
,: Examples are shown in Fig. 30. Specific experimental data may on occasion be ,:
k r o
I oo
': better fit by distributions other than the Normal, but this is uncommon. :n
LY R

Actually, the empirical fact that the variability of soil properties is

often well approximated by the Normal frequency distribution is not surprising.
The Central Limit Theorem, one of the cornerstone of statistics (Benjamin and
Cornell, 1970), shows that when variability among data is caused by the
cumulative effect of a large number of small pertubations or errors, the

resulting frequencies of observations should exhibit a Normal distribution.
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0‘ Presumably for this reason, Normal distributions are common across the broad ﬁ
¥
o (]
' spectrum of experimental science. 1In Part V of this report, deviations of :;
v observed frequency distributions from Normality were used to identify changes N
A
A ~ .-
'5 in construction process and inspection procedures. .
NS r
'--‘ &
\:- »

Single Limit, Standard Deviation Unknown

iy
5

o The development of an acceptance sampling plan to assure the mean when the N
N S
‘o .
. . P s o
f: standard deviation is unknown is similar to the case when the standard o~
l“‘ L]
v C . . . . -
- deviation is known, except that the index z; involving the known standard -
~
v C . . . . C s -
:f deviation sy' is replaced by an index t involving the sample standard deviation -
;\5 >
N A5
K \J Sxe ta
o >
- The inspection sampling procedure is i
¥ ")
7 1. Take a random sample of n tests. N
N ry
(f 2. Calculate the mean and standard deviation of the test ;
"y results, A
-
- my = (1/n) Ixj -34- o3
-.‘~ [
n.‘. S
< sy = (1/n=-1) L(xj - my) 2 -35- o
N N
- 3. Evaluate the sample statistic N,
m_ -m
£ = a X -36~-
., :
. -
) s
N sx//n ,
n, ! N
) \-.‘
’&'. A
| in which m, = AQL. >
» =
ke 4. Fix an acceptance criterion t*; .
i" R,
:{ if t » t* then accept, S
" if t ¢ t* then reject. ::
~
<
N 109 X
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The OC curve for this plan is a function of both the actual mean and

actual standard deviation. The vertical axis of the OC curve is the
probability of accepting the tested material. The horizontal axis is the
non-dimensional quantity X = (ma'—mx')/sx', which involves the specified AQL
and both the real mean and the real standard deviation cf., plot in S.W..

The OC curve is calculated in a manner similar to that when the standard
deviation is known, but whereas the variation of Zy, across different samples
can be approximated by a Normal frequency distribution, the variation of t
across different samples -~ at least for small n (Say n > 20) -- is wider than
for zy and must be approximated by a so-called student -t frequency
distribution. The variation in t is wider than in z, because the sample

standard deviation varies somewhat from sample to sample. As n gets larger,

-
)
'

AN
(g
the variation of s, about sx' becomes smaller, and the student t distribution N
",
SN
>
approaches a Normal distribution. o
ARt
,
To design an acceptance sampling plan for the mean when the standard .
M
-~
~

deviation is unknown the procedure is: &
Te Specify,

Seller's risk

e } =

B = Buyer's risk :
my = Acceptable (mean) Quality Level (AQL) o
m,; = Unacceptable (mean) Quality Level (UQL) A

e

Ly

2. Make a rough estimate of s,°

vT.

.

Ve
P

3. Compute ) =  ~—8w—— -38-~

x
o

- - - 3 - - v - - - » - - -
- .p - ’ .A ‘. ‘. ‘l = ~ .
A COATRCR LR STt LS, EASAEN
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This is the value of A when the actual mean my' equals the UQL my,' .

4.

6.

Make a rough estimate of n from Fig. 32.

Material having the value of A from step 3 should be accepted
only B fraction of the time. Find n in Fig. 32 providing B
probability of accepting material of quality A

Find the acceptance criterion t* corresponding to a frequency of

not being exceeded (1-a) from Table 6, using v = n-1 degrees of
freedom.

Specify sampling plan by

n = sample size
t* = acceptance criterion
m -m
X a o
t ——— = test statistic. -39~
sx//n

Plate 4 shows the design of a sampling plan for the same condition as in

Plate 3, but that the standard deviation is not known. The effect of not

knowing the standard deviation in this case is that the sample size must be

increased by one test, from 9 to 10, to obtain the same precision in the OC

curve.

Double Specification Limits, Standard Deviation Known

Certain material properties, as for example compaction water content, have

specification limits both above and below their target value. Soil moisture

should be within some %+ interval of optimum, say, no wetter than +2% of

standard or modified optimum Proctor and no dryer than -2%. An acceptance

sampling plan with double specification limits intends to assure that a
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material property is within the defined interval.

An acceptance sampling plan with double limits is designed by specifying
two acceptance bounds. If the sample average lies between these bounds, the
lift is accepted. If the sample average lies outside, the lift is rejected.
The bounds are chosen to conform to specific values of the Buyer's risk and the
Seller's risk.

If the variability of the soil properties as measured by the standard
deviation is known, then the variability of the sample average of n tests from
one sample to another is also known (i.e., sp=sy'//n). BAs before, if the soil
properties are assumed to have a Normal frequency distribution, the variation
of the sample average also has a Normal distribution. Even if the soil
properties are not Normally distributed, the distribution of the sample average
is usually still approximately Normal.

Let the target value or acceptable quality level of the average soil
properties be my. If indeed the average soil property is my, the sample
average of n test results will vary about my as shown in Fig. 33. This
sample-to-sample variability of my is centered on ma and has standard deviation
sy//n.

Let mU* and mL* be the upper and lower acceptance limits on the sample
mean mye. If my, 1S greater than mU' or less than my* the lift is rejected. The
Seller's risk a is the frequency with which the sample mean my lies outside mU'
and my," when in fact the true mean is m,. That is, the Seller's risk is the
shaded areas in under the frequency distribution of my, in Fig. 33. Each tail

area has frequency (i.e., probability)} a/2.
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Let UQLy and UQL;, be the upper and lower unacceptable gquality levels. If

P AL

the actual average soil property lies just outside the UQLy or UQL;, there is

7

still a chance that sample variability will allow the measured sample mean to

14

lie inside the range (mL', mU*), and thus lead to the lift being improperly

vhAN

55

accepted. This frequency is the Buyer's risk f. The sampling variability of

e
PN

my for two lifts which have true means equal to UQLy and UQLp, are shown in Fig.

34. The frequency (i.e., probability) with which the sample mean from these
soils lies within .he interval (mp*, my") is shown by the shaded areas under

the respective frequency distributions. Each tail area equals 8, the Buyer's

SRR

risk.

To design an acceptance sampling plan on the mean with double

.
P
v e

specification limits, two constraints must be satisfied, the Seller's risk and

IEY

~

L

the Buyer's risk. Two parameters can be adjusted, the sample size n and the

)

location of the acceptance limits mU* and m,*. The sample size controls

oYy

the width of the frequency distribution of my, in that the standard deviation

'~

of my, equals sx'//;; while the limits mU* and mL* control where the frequency

R A

distributions are cutoff to yield a and B.

P

L% Ty e ™y ey

From Table 4, the tail area under a Normal frequency distribution can be

related to numbers of standard deviation on either side of the mean. Let Zp be
the number of standard deviations below which the area under the Normal
frequency distribution is (1-p) (i.e., Zp is the standard Normal variable which

has probability p of not being exceeded). For example, from Table 4, zg,975 =

e
e

I

+ 1.96, and 245,925 = =-1.96. Then, Figs. 33 and 34 lead to four relationships

CRENERE)
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from which an acceptance sampling plan can be designed:
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As an example, consider an inspection plan for compaction water content in

r7
Ay

which the Seller's risk and Buyer's risk were set at a=0.0% and 8=0.10,

A

respectively. The target value of average water content is Proctor optimum,

-
-
S
-
"
.

P
)
o

and intolerable deviation from the target has been decided to be +3% water

5‘.5-.

U T o

content. Assume that from project records the standard deviation were known to

ot
,
[3

¢’z

be about 1.5%. For these conditions, Bgns. 40 to 43 become
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m_ -0 .
_2___ = 1.96 -44- f‘
1.5/¥n ' q
.‘:‘
* :..I
0L e a5 3
1.5/Vn - * - o™
*
m. - 3%
L - q.282 -46- ﬂ
1.5//n .
xl
e
\
.
. ]
m. (-3%) C 1.28n -47- q
1.5/7/n ' i;
-,.
"
”w
Solving the first two equations simultaneously gives, 3
mU* = - mL* . -48- n
}r
4
Solving the first and third equation simultaneously gives, t
* .
n = [(-—‘5_) (1.5) (1.96 + 1.282)12 = 2.62, -49-

or rounding off, n=3. Putting n=3 into the equation for Seller's risk gives

*
my

1.7%, mf, = -1.7%. Putting n=3 into the equation for Buyers risk gives

*
My

1.9% and my, = -1.9%. Choosing *1.8% as the acceptance limits gives a

Seller's risk of a=0.38 (i.e., less than 5%) and a Buyer's risk of B=0.08
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(i.e., less than 10%). The OC curve for this plan is shown in Fig. 35.

Another example is given in Plate 5.

Double Specification Limits, Standard Deviation Unknown

When the standard deviation is unknown the procedure for specifying an
acceptance sampling plan is much the same as when the standard deviation is
known, except that the sample standard deviation sy replaces the known standard
deviation sy' in Egns. 40 to 43, and the Student-t distribution (Table 6)
replaces the Normal distribution (Table 4).

As for the case of a single specification limit, the test statistic is,

M T "a
t=—?7/T- -50-
X
For sample sizes above about n=20 these modifications are unnecessary because
the sample standard deviation sy is sufficiently close to the actual standard
deviation sx'.
The inspection sampling procedure is,

1. Take a sample of size n

2 Calculate the mean and standard deviation of the test

results,

my = (1/n)) x3 -51-

sx = (1/n-1) J(xj = my)? =52~
3. Evaluate the sample statistic
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My = Ma
t s =53
X
4. Fix an acceptance criterion t¥*;
if |t| < t* then accept
if |t| > t* then reject.

As in the case of a single specification limit, an inspection sampling plan
with double limits is designed by specifying a sample size n and a criterion
t*, An initial gquess at sx' is made, and Fig. 32 is used to estimate a sample

size n based on the quantity,

A = M =54~
SX

in which my; is the target soil property and UQL is either the upper or lower
unacceptable quality level. This assumes that UQL;; and UQL; are symmetrically
placed about the target my. See Duncan (1974) or Grant and Leavenworth (1972)
for asymmetric cases. Unacceptable materials at either the UQLy or UQL;, should
be accepted only with frequency B. Thus, knowing the Buyer's risk B and the
number of standard deviations A separating the UQL from myz, an initial sample
size can be chosen from Fig. 32. Using UQL=*3%, my=0%, and sy 1.5%, as
before, Fig. 32 leads to n = 4.

The acceptance criterion t* is found from a table of the Student's-t
frequency distribution (Table 6). This table provides the frequencies with

which given values of the test statistic of BEqn. 50 are exceeded due to random

e, .,:u‘,':-f AN -,-:...-‘,’;, o ,.;.,;._..;,;_-‘;f_‘.' DAL l‘._"_.-'&f__-'\.(' \-:‘..-'vf' -.. N N 3

LY
N

WA o

»*e

1.

B

\: .

et /.-._‘ ;o »

. T

PR

A Wiy

N )

R
Al

P

» é
incd®

Pard

l..l' . /. --'A‘ ":"

) %



{
&g
¢
l..
e

&

4
. . . .

o’ sampling variations when in fact the soils being inspected are of target

-

'l
‘? quality m,. Because both unacceptably high and unacceptably low values will be
' rejected, the sSeller's risk is the sum of the frequencies with which the test
;: index of Fgn. 50 lies above +t* and below -t*. Thus, t* is set so that the
- tail areas on either side each have probability a/2. For the Student's-t
i

frequency distribution these tail areas depend on the sample size taken, though

-~
f the so-called degrees of freedom v=n-1. For these conditions, Table 6 gives a
. t* value of 3.25.

",
: Se Specify Sampling Plan:
5: a) Take sample of 4 tests

N b) Calculate sample mean m, and sample standard deviation sy
i c) Calculate the test index
— m. - 0
. t = ————— -55-

- s
- L
b,

N d) If -3.18 < t € +3.18, then accept lift.
vig If t < -3.18 or t > +3.18, then reject.

:4 Acceptance Sampling for Fraction Defective

.

:‘ The following section considers the case in which an inspection sampling
'l

’ plan is employed to assure that the fraction of out-of-specification material
:~ in a compacted fill is within tolerable limits. Such plans are generally
:- called acceptance sampling for fraction defective.

If the soils data display a Normal or bell-shaped frequenc. distribution,
£
o there is an exact mathematical relationship between the mean and <. ‘'ri J
~ -

:_ deviation of the data on the one hand, and the fraction defective on the other,

’ This is shown schematically in Fig. 36. ‘.
L4 &
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Setting the lower limit of acceptable values or the UQL at

L = lower limit of acceptability

a standardized deviate zj is defined as the number of standard deviations sy'

separating the mean of the data my from the lower limit L,

z = S -56-

If the data are normally distributed, 2z, is uniquely related to the fraction
defective, as shown in Fig. 36. Numerical values of this relationship are
found in Table 4 or can be approximated by Eqn. 24. Fig. 36 illustrates that
the higher the mean and the lower the standard deviation, the lower the
fraction defective. An acceptance sampling plan for fraction defective is
structured in the following way:

1. Test a random sample of size n to obtain the data Xq,...,Xpe

2. From the results, calculate a sample mean my, sample standard
deviation sy, and test index

zZ = — ., -57-

Depending on the specific problem, the formula for z may vary
somewhat.

3. Compare the computed value of z with a critical value z*:
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If z » 2z*, then accept.
If z < z*, then reject.

The choice of n and z* defines the performance properties of the sampling plan.

These parameters are usually chosen to satisfy specified levels of Buyer's risk

P

and Seller's risk.

.

v
DR ]
P

Ve

Operating Characteristic for Fraction Defective Sampling

.“ L}

o

The operating characteristic or OC curve summarizes the discriminatory

Py

power of an acceptance sampling plan. The OC curve shows how the probability

*r YNy

-' l., LY
a4

of accepting a lift or other gquantity of material varies as a function of the

L
s

e

3
fips

quality of the material being inspected. For plans aimed at fraction defective

‘s
P

[
-

the OC curve relates probability of acceptance to the fraction defective in the

N

11ft.

NG LN

Consider an acceptance sampling plan for percent compaction specified by: :3
\j

n =5 :a

L = 95% maximum Proctor density \j

z* = 1.645 (i.e., 5% of the soil less than 95% max. density). }¢

Presume the standard deviation is known to be sy' = 2%. Under this plan 5

P
IAEARS

tests are made. The average of the tests my is compared to L through z =

.f‘.l, v

-
« s

e,

(my = L)/syx's If z > 1.645 the material is accepted; if z < 1.645 the material

is rejected. The OC curve for this plan relates the probability of accepting

the material to the actual fraction of the lift compacted to less than 95%

———
L 0

1% HIZI LR ¥

Procter maximum.,
For Normally distributed material with known standard deviation there is a
unique relation between the fraction defective and the mean. For sy ' = 2% and

L = 95% Table 4 is used to find the following relations:

a

CullCs
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Fraction defective

Mean

Thus, the horizontal axis of the OC curve can be expressed either as actual
fraction defective or as actual mean.

For a given fraction defective or given mean, the probability of accepting
the material equals the probability that the test result z is greater than z* =

1.645. This probability can be determined by noting that z is itself Normally

distributed. With L and sy' fixed, z depends only on the mean my of the test

results. When sampling from a Normally distributed population, the frequency
distribution of the sample mean is also Normal (Part II). Thus, the
probability that z»1.645 is found by calculating the mean and standard
deviation of z and referring to Table 4.

The mean and standard deviation of z are found by the method described in

Part II,
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Table 4 is entered by calculating the number of standard deviation of z
separating m, from the acceptance criterion z*=1.645. The corresponding number
on the vertical axis is the probability of rejection (i.e., the tail area of

the Normal curve, or Pr{z<z*}). The probability of accepting the material is

the complement of this number,
Pr{accepting1 =1 = Pr{rejectinql. ~60 -

This procedure is illustrated in Plate 6.

The entire OC curve is found by calculating the probability of accepting
the material for various values of actual fraction defective. For the sampling
plan above, the full OC curve is shown in Fig. 37. If none of the material is
defective the probability of accepting is 1.0, and as the actual fraction

defective increases (i.e., as the mean of the material decreases) the

probability of accepting goes down.

Single Limit with Known Standard Deviation

The main gquestion in designing an acceptance sampling plan is to decide
upon a sample size n and an acceptance criterion z*, These choices dictate how
the plan performs with respect to Buyer's risk and Seller's risk. Let the

probability of improperly accepting unsatisfactory material, the Buyer's risk

be,
Buyer's risk = B; -61-
let the probability of improperly rejecting satisfactory material, the

Seller's risk be,
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Seller's risk = q. -62-

An OC curve is defined by specifying two points through which it passes.

For this purpose the Buyer must specify a maximum fraction defective that he

N

>
«'u

considers tolerable and which would be accepted under the plan only some

L

»

fraction B of the time. This poor quality material as a fraction defective is

AL
.

ey

denoted Pu" At the same time, a target or desired quality level is specified

o

which would be accepted at least (1-a) fraction of the time. This good (i.e.,

»
o

SENBAN

B

acceptable) quality as a fraction defective is denoted pa'. The OC curve can

!
-

be made to pass through the two points (pg',1~a) and (pu',B) by adjusting the

R,

sample size n and acceptance criterion z*,

ria

N T
‘
I S T S

v %
s
.

For example, consider that acceptable material has pa'd3.01 fraction

-
1Y

P

defective and an unacceptable material has p, =0.10 fraction defective. To fix

A
2
the two points of the OC curve specified by the Buyer's risk and the Seller's ':
KRN
o
risk, the first task is to calculate the corresponding averages ma' and mu' 3:
which would give fractions defective of p,'=0.01 and p,'=0.10, respectively. L)
e
~

From Table 4, the area under the Normal curve below =-2.33 standard deviations

LAY .’.:'.

» a4

from the mean equals 0.01, and the area below -1.28 standard deviation equals

0.10, Tius, an acceptable scil having p5;'=0.01 and standard deviation sx'=2%

would hase a mean,

L + 2.33 sy

3
]
1

95% + 2.33(2%) -63-

99.7%;
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and an unacceptable soil having p,'=0.10 would have a mean,

m; =L + 0.84 sy

95% + 1.28(2%) -64-

97.6%.

The test index z is calculated from Bgqn. 56. Due to random sampling
variability, the value of z varies from one sample of n tests to another even
for the same soil. This sampling variability can be characterized by a mean mg
and standard deviation s; for each of the soils above. Specifically, for the

acceptable quality soil,

m = = = 2,35

Sg = 1//“ . -66-

For the unacceptable quality soil, my = 1.28 and s; = 1//n. These are the
means and standard deviations that the test statistic z would have if the
actual soil being tested were just at the edge of being acceptable or just at
the edge of being unacceptable, respectively.

The Buyer's risk and Seller's risk specify target probabilities of
accepting the two types of soil above when using the acceptance sampling plan.
For acceptable soil Pr{z<z*} = a; for unacceptable soil Pr{z»z*}=f. This gives

two equations. Again from Table 4, for Pr{z<z*} = a = 0.05 the mean of z must

be 1.645 standard deviation larger than z*,
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2.33 - 1-645//“
For Pr{z»z*}) = B8 = 0.10, the mean of z must be 1.28 standard deviations smaller
+ 1.28 Szu = z*

+ 1.28//n

Eqns. 67 and 68 are solved simultaneously to give,

7.79 » say, 8 -69- o,

An example of the acceptance sampling plan is specified as shown in Plate 7. &
The design of an acceptance sampling scheme may be accomplished more -

quickly by algebraically solving for the sample size n and acceptance criterion

For a single criterion acceptance sampling plan having parameters {(pg',a) and

(py',B) the sample size and acceptance criterion are,
u I
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standardized Normal variable for which the
probability of not being exceeded (Table 6) is 1-a. "

standardized Normal variable for which the <
probability of not being exceeded (Table 6) is 1- R.

standardized Normal variable for which the
probability of not being exceeded (Table 6) is 1-py' ~

standardized Normal variable for which the
probability of not being exceeded (Table 6) is 1-py'
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z + 2z o
1-a 1-842 -
= |— -71-
no= ()
o] a u .
- ¢
I: r
" + 2 z ,
o . z 21-8 z, 1-a —7e .
) 27 T vz
X 1-a 1-8 Q
v
> To summarize, the procedure for designing a single limit acceptance
&
ﬂ . .
sampling plan is:
o
* . .
1e Select a Seller's risk a, and a Buyer's risk R.
2. Select acceptable quality level ps' and unacceptable quality level .
~
d pu'o [
o X
. 3. Find values for standard Normal variables corresponding to 1=-a, 1-8, tod
o, (1-p3'), and (1-p,') probabilities of not being exceeded (z1_4, Z1.g/ )
p \
= Za, Zy)e [ ]
_ i
- 4. Calculate the sample size by -
] \.:.
, A
v ik 21.8.2 ~
n = (- ) ~73- >
z -2z
a u
f
» .
‘. -
; 5e Calculate the acceptance criterion by -
>
o4
z, 2, 8 vz oz, <
¢ z* = = > " Zu 2 ~-74- e
4 .
! t-a 1-8 Ny
: 6. Plot the OC curve .
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Single Limit with Unknown Standard Deviation .
Usually the standard deviation of the material property being tested is .
~ »
unknown. The only information about the standard deviation comes from the data e
4
. L o
themselves in the form of the sample standard deviation, bﬂ
Y
s
’l
/ 1 2 N
s.=/ — J (x, ~m) -75- )
X n-1 1 X ‘.
’
o
If the sample size is large (n>20), the sample standard deviation will be close 2
to the real standard deviation and the assumption of known standard deviation -
)
can be made with neglible error. If the sample size is not large, a slight E}
AR
et
modification to the foregoing procedure must be made. 2o
>
When the standard deviation is unknown the quantity z is calculated using .
the sample standard deviation sy, f{f
'."j.!
m - L "
z = =/ - _76- ..
Sx at
.":
Ky
s
Whereas, when the standard deviation is known the quantity z has a Normal -:~
-
’l
distribution, when the sample standard deviation is substituted for the real .
’
04
standard deviation the calculated value of z has more variability. ©Now the o
denominator as well as the numerator will vary from one sample to another. The ;i
frequency distribution of 2z takes on the slightly broader shape of the .
Student -t distribution. S
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The procedure for designing sampling plans and calculating OC curves when
the standard deviation is unknown is the same as when the standard deviation is
known, with the exception that tables of the Student -t frequency distribution
rather than the Normal distribution are used. Areas under the Student -t
distribution for the standardized case of zero-mean and unit standard deviation
are given in Table 6. Note, unlike the Normal distribution, Student -t
depends on the sample size n. As n becomes large the shape of the Student -t
approaches the Normal distribution.

Convenient approximations for sample size and acceptance criterion when

the standard deviation is unknown are (Wallis, 1947),

. 2, %, g tzoz, o 77
Z ot 2, _a
z
n = (1 + z*2/2) ( 1-a 1_8)2 -78-
z -z
a u

Thus, when the standard deviation is not known a larger sample must be taken to
get the same OC curve. 'The sample size must be larger by the factor (1+2%2/2) .,

The example of the previous section is recalculated in Plate 8, now
relaxing the assumption that the standard deviation is known. The OC curve can
be calculated approximately but acceptably by assuming z to be Normally

distributed with a standard deviation equal to sx (1/n + (z*2/2n))1/2. The
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approximate OC curve is shown in Fig. 39. Thus, to calculate the real fraction
defective p' corresponding to a given probability of acceptance q (i.e, to plot
the OC curve), first the corresponding standardized Normal deviation zq is
taken from Table 4. Next, zy is increased by the factor (1/n + (z*2/2n))1/2,

Then a corresponding zp' is calculated as
zpr = z* = zg (1/n + (2*2/2n))1/2 . -79~

Then Table 4 is used to determine p'. For example, in Plate 7, z* = 1.63 and

n = 6.

Double Specification Limits

The preceding plan pertains to the case of one specification limit. For
example, dry density should be at least 95% standard or modified Procter
maximum. When deviations in either direction are important the plan must be
modified. For a lower limit of acceptability L and an upper limit U, the
minimum fraction defective occurs when my lies halfway between L and U; that

is, when the limits are symmetric about the mean. 1In this case,

-81-
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The fraction defective equals the area under the Normal curve outside +z, or
twice the fraction defective read from Table 4. Note that z depends only on
the upper and lower limits U, L and on sx'. It does not depend on mx'. Thus,
if Sx' is known, the first step is to assume that the acceptable fraction
defective is greater than the area under the Normal curve outside *z. This may
be done without sampling, and indicates whether the variability of the
construction process retlected 1n qx' is so large as to preclude any
possibility of the tested soil being found acceptable.

Presuming that z from Km. 8 15 sufficiently large that rejection is not
inescapable, the fraction defective will depend on both z; and zpy, and the
acceptance criterion must e based on both. In concept, this is done by
summing the fraction defective heneath L and the fraction defective above U and
comparing that sum to the criterion M, However, a simpler procedure can be
developed by considering the operating characteristic curve of the sampling

plan.

Double Limits, Standard Deviation Known

The fraction defective for double specification limits is that proportion

of the area under the frequency distribution of the material property which

lies elther below a lower specification limit, N
L = lower specification limit,
130
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; or above an upper specification limit,
~
N U = upper specification limit.
A
N .
Q) For constant standard deviation the fraction defective is minimized when the
-, mean my' lies halfway between L and U. 1In this case,
.- “(L-my')/sy' = (U=my')s,' = (U=L)/2sy"' -83-
y Thus, a quick check should be made to see whether a material can possibly meet
R 7
,: the fraction defective double specification standard by finding the area under
)
. the Normal frequency distribution outside * z = (U-L)}/2sy'. If this area is
" greater than the acceptable fraction defective p;' no sampling plan alone will
‘f assure quality. The construction process must be changed to make the material
N more uniform and thus reduce sy'.
2, In the general case for double specification limits, an acceptance
<,
»
¥ sampling plan to assure fraction defective follows the following procedure:
3
B 1. Take a sample of size n
- 2. From the results, calculate the sample mean
‘.'- mx = (1/U)ZX1
o 3. Compute the quantities
.. "k -84-
":' ZL = '
7 S
e X
“~"
b~ U= K
N J mx -85 -
Z = ————— .
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4. 3Specify an acceptance criterion z¥*:
then accept otherwise, reject.

If zZy, 3 z* an~ zy » z*,

The problem with double specification limits is determining z*. 1In the

case of single specification limit z* was determined from areas under the
Normal frequency distribution to one side of a specification limit. In the

double specification case z* must be determined from the sum of the areas above
U and below L.

Consider the problem of acceptance sampling for compaction water content.
The target value is Proctor optimum water content. The upper specification
limit is U = +2% optimum; the lower specification limit is L = -2%. Presuming
the standard deviation of water content to be 1%, the limits are

.. oL ~86-
23
X

i+

N
it

1+

That is L and U are 4 (i.e,, +2) standard deviations apart. From Table 4 the
area under the Normal curve beyond z=2 is 0.02. Thus, the lowest possible
fraction defective would be twice 0.02 or about 4%. The fraction defective for
values of the mean other than that halfway between U and L are shown in Table
8.

Presume for sake of example that the acceptable quality level or AQL
expressed as a fraction defective were pa' = 0.10. That is, the lift would be
considered acceptable it at least 9% of the soil had a compaction water

content between I, = =2% Proctor optunum and I = +2%, From Table 8 (by

interpolating m,' values) any lift with an average water content bet :en -0.7%
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and +0.7% would be acceptable, for the fraction of any of these lifts with
water contents outside #2% would be less than 0.10. At mx' = =0.7% the
fraction below -2% is 0.096 and the fraction above +2% is 0.004. The sum is
0.10. Similarly but in reverse at mx' = +0.7%, the fraction above +2% is 0.096
and the fraction below -2% is 0.004. The double limit specification can thus
be met by combining two single limit tests designed such that the acceptable
fraction defective in each is reduced from pa‘ =0.10 to Pa‘ =0.096. One
applies on the upper limit side, the other applies on the lower limit side.

The design for these two plans is exactly as discussed before, and is carried

out in Flate 9.

Doubhle Limits, Standard Deviation Unknown

The problem of designing an acceptance sampling plan for fraction
defective with double specification limits and unknown standard deviation is
less easily solved than the single limit problem. 1In particular, with double
limits the shape of the OC curve depenis on how the fraction defective is split
between the upper and lower tail of the distribution. However, the
availability of statistical tables and graphs designed expressly for the
purpose (US DOD Military standard 414) jreatly simplifies the task. For the
purpose of acceptance sampling of engineered fills, the jraphs of Fig. 41 and
Fig. 42 provide sufficient accuracy.

The procedure begins as for the single limit, unknown standard deviation
case. Buyer's and seller's risk o and ¢ are specified, and aceceptable and

. B . ' U ~ B
unacceptable fractions defective p, and p,, » Bns. 77 ant 73 are used to
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estimate a sample size n and an acceptance criterion z*. From the estimates of

n and z* the quantity

AL
n -1 -87-
2

\ is calculated and used to enter the absicca of Fig. 41. On the ordinate, and
corresponding to the appropriate value of n, an allowable fraction defective M
is read.

The test procedure is implemented by taking a sample size n, calculating
the sample mean my and sample standard deviation sy, and then computing the

test indices

m. =L
zL =3 -88~
X
, - u-"x -89~
U s
X

From Fig. 42, for the appropriate value of n, estimated fractions defective
corresponding to z;, and zy are read of as pp, and py, respectively. These are

summed to obtain an estimate of the total fraction defective, which is in turn

compared to M to decide whether to accept or reject the lift. If pr, + py < M,
then the lift is accepted; otherwise, the lift is rejected. An example is
given in Plate 10. The OC curve for this procedure is approximately the same

as in the single limit case, using the same values of q,8, Pa': and Pu'-
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B =

SUBJECT: Acceptance sampling plan to assure mean value of
compacted dry density; standard deviation known.

= E2mxx wm W

I. PROBLEM:

NDesign an acceptance sampling plan to assure the value of mean
compacted dry density of an engineered fill.

o
II. SOLUTION: o
1. Parameters: 3
Seller's risk a = 0.05 i~
Buyer's risk 8 =0.10 g
AQL my = 120 pcf ~
UQL my = 110 pcf ps
Std. Dev. sy' = 10 pcf o
=X
2. Find standard Normal variable corresponding to 1-a and B8: tb
Z1-gq = 209.95 = +1.65 .
Zg = 29,10 = -1.28 R
3. Set Seller's risk and Buyer's risk: :
* ‘v
m -m -
- f - o
— = 5 20fﬁ)?/n = tma - -1ees A
s, /Yn pe ;}},'
* o
- N -
" ™ m-110 pcf -z LN
. ~ 0 pcE/in - 8  =1.28 .
S, //n

4. Solve simultaneously to obtain:

n 8.6 + 9
*

m- = 114 » 114 pcf.

Se OC curve shown as Fig. 29.
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PLATE 4 SHEET 1/2 "~
™
54
-
SUBJECT: Acceptance sampling plan to assure mean value of compacted dry '~
density; standard deviation unknown. q
"
L}
-
=24
I. PROBLEM: Design acceptance sampling plan to assure mean value of compacted 41

dry density.

32X

II. SOLUTION:

"

r.‘:)
1. Specify, e
2pecity 5
@«  =0.05 N
B =0.10 2}
may = AQL = 120 pcf Qe
my = UQL = 110 pcf g
A
o
N
2. Estimate Standard Deviation ::
. >
sx' = 10 pcf. o

3. Estimate Sample Size

PR

. l.- "’ ..l
e

a u 120 - 110 pcf.
M 10 pcft

>
]
|
!
-
L]
(@]
f
b 4

For A=1.0 the probability of accepting should be B=0.10. Fig. 32
shows that n=10 is the approximate sample size providing this
probability of accepting.

-

¥
4
v el

4. Find tx*,

t ‘3 TX

T

From Table 6 the value of t which is exceeded (1-a)= 0.95 fraction
of the time is t*=-1.83.

%,z
1 4
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PLATE 4

SHEET 2/2

SUBJECT: Acceptance sampling plan to assure mean value of compacted dry

density; standard deviation unknown.

5. Specify acceptance sampling,

a) Take a sample of size n=10
b) Calculate mean of sample my=(1/n)Jx;j
Calculate standard deviation of
sample sy = (1/n-1) Z(xi-—mx)2
c) compute quantity

m - m
X a

Sx//n

L 120 pcf
s, /Y10

d) 1if t > -1.83, then accept
t < -1.83, then reject
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PLATE 5 SHEET 1/2 Y
-~
‘."
..:J
SUBJECT: Design acceptance sampling plan to assure average compaction water :'-:
content within double specification limits; standard deviation is -‘—.'
known. -
.'..4
.:.‘:
1. PROBLEM: 3
_— .:__1
Design acceptance sampling plan to assure average compaction ‘-,“j
water content is within #2% Procter optimum. Standard deviation is known -._’
* -
to be sy = 2%. A
vl
aod
II. SOLUTION: g

1. Specify:

a=0 .05 Target water content = Procter optimum. -_:
B=0.05 UQLy = +2% Procter optimum. o
sg' = 2% UQL[, = =2% Procter optimum. :.:
\.-
o

2. Write equations for Seller's risk and Buyer's risk:

.
I3

m* - m m* - o N
U U et
—2 - Fila2 o+ — = 1.96
s, /V/n 2/¥Vn e
m* - m m* - o -
L L
— _a = Za/z > —_— = = 1,96 .
S, //n 2/V/n :;::
m¥ - UQL, , me - 2% .
, = 8 > = - 1.645
s //n 2/¥n -
O
m* - UQL m* - (-2%) >
U LIS
—-L—,-————Ii = %18 > —_— = 1.645 et
s //n 2//n e
X o
‘e

—u= - - m x EEATREE TR A & AT R R a3 AR SSRR TR X A=

%R
P A
*
]
.t 1]
Py

.

]
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PLATE 5 SHEET 1/2

B T e

= o mm g e E S

— T xETrIm R s T A 2R T

SUBJECT: Design acceptance sampling plan to assure average compaction water
content within double specification limits; standard deviation 1is

known.

e m o o w T A WA TR R - e P =

3. Solve equations simultaneously:

a) from Egqns. 1 and 2,

my* =  -mp
b) from Egns. 1 and 3,
n = 13
c) from Eqns. 1,2,3,4,
* =

mU = —mL* = 1 .09

4. Specify sampling plan:

a) Take sample of size n=13 water contents
b) Calculate mean of sample my = (1/n)Ixj

c) If -1.09% < my < +1.09% Procter optimum, then accept lift.
d) If my > 1.09% or my < 1.09% Procter optimum, then reject
1ift.

NOTE: The relatively large sample size and tight acceptance limits for this
inspection plan are caused by the large variability of the soil relative to the
unacceptable quality limits of +2% Proctor optimum water content.
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PLATE 6

X

.

P

SUBJECT: Operating characteristic (OC) curve for fraction defective sampling,

typical calculation; standard deviation known. n;
LY
2]
| . N
Te PROBLEM: For an acceptance sampling plan specified by r:
\'N.
n =5, -
L = 95% optimum Proctor,
sy' = 2%,
Z¥ = 1.645;

Find the probability of accepting material actually having 5% defective
(i.e., 5% of the material compacted to less than L).

2. SOLUTION:

1 Find actual mean if s,' = 2% and fraction defective is P' = 5s%.

From Table 4, 5% defective corresponds to a mean 1.645 standard
deviations greater than the lower limit of acceptable material.

my' =1L + 1.645 sy
= 95% + 1.645 (2%) = 98.3%
2 Find mean and standard deviation of z for n=5, m,' = 98.3, L = 95%,
and sy,' = 2%
m; = (myx' = L)/sy'
= (98.3%-95%)/2% = 1.645
Sz = 1//n
1/V5 = 0.45
3 Find number of standard deviations of z separating m, from z* =
1.645
number standard deviations = (m, - 2%)/s,
= (1.65 - 1.645)/0.45
= 0.00

4 Find probability of accepting material if m, is 0 standard
deviations above z .

@ YTy
n.'-'

G From Table 4, =z = 0.00 Pr{rejectinq} = 0.50

b Pr{acceptingl = 1 - pr{rejecting}

s = 1 -~ 0.50

ﬁ{ = 0.50.
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PLATE 7 SHEET 1/3 :-\.j,'
2]
o
SUBJECT: Acceptance sampling plan for fraction defective; standard deviation ::;-
known. atar
e N
q’_‘J‘
1. PROBLEM: .: :
LS
Design an acceptance sampling plan for fraction defective o
¥-compaction, when the standard deviation is known. -
o
2. SOLUTION: 7.
J‘".’
1. Specify: Buyer's Risk a = 0.05 i:.
Seller's Risk B = 0,10 ot
Acceptable fraction defective pa' = 0.01 -
Unacceptable fraction defective p,' = 0.10
Standard deviation sx' = 2% Procter optimum
Lower Limit of acceptable compaction L=95% Procter
optimum

2., Calculate average percent compaction corresponding to paf and gﬁﬁ:

m - 95%

. a
Acceptabl t P —— = = 2.
cceptable compaction 3% 20.99 2.33 » ma

99.7%

m - 95%

. u
Unacceptable npaction; ——7e————— = = . = 97.
p compaction 7% 20.90 1.28 =» mu 6%

. s
FEL ;

PN S S
o R AR S

3. Define test index:

re
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<
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PLATE 7 SHEET 2/3

SUBJECT: Acceptance sampling plan for fraction defective; standard deviation
known.

4. Calculate mean and standard deviation of z for acceptable and
unacceptable compaction:

ma - 95%
Acc able acti = —— = 2,
eptable compaction mza % 33
S.a = 1//n
mu - 95%
Unacceptable compaction mzu = 5w T 1.28
Szu = 1//n
S Fix Buyer's and Seller's risk:
Seller's risk (acceptable compaction): Pr{z<z*} = a; = 5%
2% - mza
S = 6.05 = “10645
z
z* - 2.33
————— = =1.6
1/Vn 45
Buyer's risk (unacceptable compaction): Pr{z>z*}==0.10
z* - LU
—_————— = 41
S z1—0.10 1.28
zu
*
2 -0.84 _ .28
1/Vn
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PLATE 7 SHEET 3/3

Acceptance sampling plan for fraction defective; standard deviation

SUBJECT:
known .
Aow
——— i~
ey
Solve simultaneously to obtain: ::
e
n = 7.8 + 8 -
z* = 1.74 .r“.p
Y
s
6. Specify acceptance sampling plan: '\-
s
ae. Perform n = 8 density tests S
b Calculate the mean of the four results, my. .
Ce Calculate the quantity z,
m_ - L m_ - 95% -
X X
zZ = ; = — .--_'.
SX 2% ;"n"f
d. if,
Z 7 1.74, then accept
z < 1.74, then reject
The OC curve for the sampling plan (n=8, z*=1.74) is shown in Fig. ’
38.
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PLATE 8 SHEET 1/2

SUBJECT:

Acceptance sampling plan for fraction defective; standard deviation

unknown .,

PROBLEM:

SOLUTION:

1‘

2.

Design an acceptance sampling plan for soil compaction with the

properties
a = 0.05 pa' = 0.01
B =0.10 py' =0.20
L = 95% optimum Procter

Unknown.

Sx

Find standard Normal variables corresponding to a,8,pa' 0y’

From Table 4: a + 2Zq_q4
8 * 21-8
Pa' » 25 =
Py’ » zy =

= 1.645
= 1.28
2.33
0.84

Calculate sample size n and acceptance criterion z*.

zZ zZ + z z
* a 1-8 u  1-q

= (2.33) (1.28) + ( 0.84) ( 1.645)
1.28 + 1.645
= 1‘5
2
* z + z
e
Z - 2
a u
2
-0+ 1.49 | (1.645 + 1.28)
- 2 2.33 -0.84
= 8.13 » 8
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PLATE 8 SHEET 2/2
SUBJECT: Acceptance sampling plan for fraction defective; standard deviation
unknown.
3. Specify Sampling Plan
a. Take random sample of size n = 8
b. Compute sample mean my, standard deviation sy, and the test
index
m - L
7z = x
L S
X
c. Compare zj with z* = 1.5,
If z;, » 1.5, then accept lift.
If z;, < 1.5, then reject lift.
4. The OC curve for this plan is shown in Fig. 39.
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PLATE 9 SHEET 1/2

SUBJECT: Acceptance sampling plan to assure fraction defective with double
specification limits; standard deviation known.

I. PROBLEM:

Design an acceptance sampling plan to assure fraction defective on
the basis of compacted water content. Assume SD known to be 1% optimum
Proctor.

II. SOLUTION:

1. Specify,

a = 0.05 sy' = 1%

8 = 0.10 U +2% Procter optimum
py' = 0.10 L ~2% Procter optimum
py' = 0.30

2. Determine values of m,' such that the sum of fraction defective above

U and fraction defective below L equals the AQL, P5'=0.10

from Table 8 (by interpolation):

mean Pu PL P ToTAL
my' = +0.7 0.096 0.004 0.10
my' = =0.7 0.004 0.096 0.10

3. Determine standard Normal variables corresponding to (1-a), R,
maximum of (py,pp), and pa'

a = 0.05 21y = 1.65
B =0.10 Z1-3 =1.28
max(py',pr') = 0.096 Zpa = 1,30
1
Py = 0.30 Zpu = 0.53
147
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PLATE 9 SHEET 2/2

SUBJECT: Acceptance sampling plan to assure fraction defective with double
specification limits; standard deviation known.

4. Evaluate n and z*,

VA + 2
1- 1-8
(__0‘_______)2

From Egn. 71 n =
zZ -2
a u

+1.65+1.28)2

= “.304%53 + 14.5 + 15

From Fgn. 72 z* =

1-a 1-8 o
o
= (1.30)(1.28)+(0.53)(1.65) = 0.87 N

,,4.
1

SO

5. Specify acceptance sampling plan
a) Take random sample of size 15
b) Calculate sample mean myg, and test indices,

m

_ U-"x
z, = ——

5 N %

c) Compare z,;, and zp, with 2* = 0.87,
If 2z, and zj, » z*, then accept
If z, and zp, < z*, then reject

) 6. OC Curve is shown in Fig. 40.
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PLATE 10 SHEET 1/2

SUBJECT: Acceptance sampling plan to assure fraction defective with double

specification limits; standard deviation unknown

I. PROBLEM:

Design an acceptance sampling plan to assure fraction defective on
the basis of compaction water content. Standard deviation is unknown

II. SOLUTION:

1. Specify,

a = 0.10 U = +2% Procter optimum
B = 0.10 L = -2% Procter optimum
Pa' = 0.05
py' = 0.30

2. Determine standard Normal deviates corresponding to a,B, a' and pu'

»

a =0.10 Zyeq = +1.28 -
B =0.10 Zi-g = +1.28 T
pa’ = 0.05 zg = 1.65 o
Py = 0.30 zy = +0.53 2

8

3. Use Egns. 77 and 78 to estimate n and z*,

[ 3
z + 2z 2
1-a 1-8,2 1.02 +1.28+1,.,28,2
= %2 _—_ = = 7. -
no= o Oezre/2) (e (+ =57 5so.53 ) 7-94 > 8
a u o
z z z ¢
ar o oa 1=8 " %u Tica | (1069)(1.28)4(0.53)(1.28) o S
- z + z (1.28)+(1.28) '
1-a 1-8 -~
4. Estimate allowable fraction defective M
Compute quantity \-:
®
1 - z* /n :
v - (n=1) 1-(1.09)/8](8-1) .

: = 0.28
2 2

Read M from Fige. 41 for y=0.28, n=8 » M =0.15
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PLATE 10 SHEET 2/2

SUBJECT: Acceptance sampling plan to assure fraction defective with double
specification limits; standard deviation unknown

{ 5. Specify test procedure

a. Take a random sample of size n=8
b. Compute sample mean my, and standard deviation sy, calculate

test indices,

1 m
q U~ X
4 z =
b U s
X
m - L
2 = X
b L s
X

c. From Fig. 42 read values of py and p, corresponding to zy and

2L
d. Compare py, + py to M,

If P, + py € M, then accept.
If P, + py < M, then reject.

v T Y

6. The OC curve for this plan is shown in Fig. 43

vV

aan a0 o o e o

! 150

L ,’:\J‘\-'\- T

LI L S o~
BARER RN LA
F N NS .{ o ﬁ oW m

EIE eI R I
L., -\“ A -_".‘J'\ '\' \l'ﬁf\- “~

S
N , »

SN N NN

L2 2 )
A A

R R R R R

P FUR
"sl\_l

227

.;,5{:7‘l(. ‘s "y

Y55
O

€ e atan
h:,:-{‘[r

A |

¢ . s
Tatare s,
"'.,','. .I ‘v T ®
LG

TR Y Y Y Y Y
288,
TN

x
N

Ay & %
[

P
gy

7

e
I,
ot

4

'
<A 3
7

Y

LI O B )

!
'

s
ofa

..
.
4 F .

)
.

e

e
N

58
L) 1
LIS

»
LU AN
el

Cannss
Wy
7/

AT

*

]
*®

a
&

P

K]
'-x SN
CY



0 S0 B0 Vo AV, aTo alo ale gl o7, AV, ale gty Al "Ato aio sl

‘
xk

l

Fr Seller's risk |
. equency

|

— — —— v— —

1 .
Frequency Buyer's risk

Soil Property, Xd

and unacceptahle fills showing Seller's and
(schematic).

3 [ |
O ITTIIITIO R
>
—

L R TR L RN R L R R I R I N S e ST ay e L2 ST AR YR SN ST TR G
A R T e G Tt U (W Sy ’v’\“\’u’\f5’~’~'\22$335$ .

b T Y
o' P W
Mo, Wiy, Wy,

Acceptable Fill

Unacceptable Fill

Figure 28 -- Frequency distribution of test results taken trom acceptable
Buyer's risks

LY
-

RN R SR NN S S T SO S AL
'.':"i‘ﬁﬂ."ﬂi\}.\i\f\‘.\'.\':\'C‘-{\'C\'CN

LSRRI
i ’-"(» I."_. pl

| LY

‘U.,'

A g
[

-
L

RS
2'f?

1"-‘7 2 .

* " oL o
,R.’\’\ P 5{\ ?

"

1’.‘"?1',

>

v
‘1l
3

. ! &

¢y

3 a e
‘:ﬂ.‘ﬁ/"{ ",.'. .

< )



<-\\ \I\J\\-' « \.1-' l- “
SRR 4 » . .
SHRNG .rr..u.fa...a_ A | .r\\.\\..f : , .
3 ; P \ ; Cale Sy
. S th
o O
y --
+ ‘e
,- M\w .'
: =
)
. ©
2 9
o
_ g
ol ¢
° @
. Pyt
. Q, 0
[T
. [Va) o o
‘ a 0 €
— © 9
3 m n
. I
WO
. O E v,
. o ff * 02
= .
~ o 5
N O . .p
o 33 ~
. A C...la ™ .Y
m ~ P 3
g Q o
0 A SS9 ki ',
. 5oL “5 &
=t e X
_ y y o
: w8 % — o
Ha BN/ Mg 5
r s --A
m 8 o~ .....
. = Y,
‘ w 3 w - iy
E — ] hal e
" ’
g o T )
3 m g o \.‘.
» Lon R ¥ '
o 9 Y
o [ '
: - o c ’
2 ) ) © < o~ S) VR 5
2 I B S . o g °
\ A o o o E . .-
. @s @ v
k 20ue3daddy jo A3ITTqRqOlg ) v
.-.N
,I - .\b
! o . ~‘
N 7
[} ..-
5 5]
& ’,
4 .'{
F --Il
7
L ]
>
r (3
2,49
[ 4
1 0 3
v
»
el
: N
L)




L«

e,

AT

5 a2

- W iraa | Y R
[ RS ) \<IW..$..;\...-¢..\. () .-r ..1..\... .'. ..\..\..\.-\..

o h Y
B e ) P

*Aousnboail Jo suolaIN@IAISIP TPWIAON
07 SsauasoTd butmoys ejep [o13ucd uorioeduod Teoritdws jo saldwexy -- Q€ 2Inbij

UL LIVeRD (N 3Dy RRILE VN EET IR IR E NI
u3 B 3 v 2 J N v El
T 1 0 T . 00 8
i .
4102 @ < M -
.o "
e ¢
. (-] - 1138
i o bl
2 K
g, I b4 - 12 b
jee D - TP
yto = to Z
1 v d o - ~r 2 .
45 d m %9 n
“_oa 3 “92 5
(A B < m
8@ 2 -39 2 ~
m - e
69 3 “n v = —
N -
‘s
466 0 - A,Qm& s
Lo by
, Ry
4 566°@ - < b6 @ hY
) D
S
N DO s 6 .
] . —= T = ¢ A
—_ [ [ , | +
o B ; $
i — , ,w ) _ ‘ v ﬁ _ e
SR ! &
: . ol b *
{es - C . S . <2 >
1 i ! . | M i | A
z ‘ R ooz b
M . ! ! H M [}
n ! B | ! | ! ud
3 , — | L3 x
- 99l - : | {
2 | oy dee o 2
!
g ! 4
= — =
B + L d
| | —_ I
i = —_ 4 861
. ; —
—— . -
. i
—_ i Al e i 4 02 i >§
\ tHET M b T » H A
i wu u_w,._gnm_ xﬁyﬁ mm”m MWTW% wuﬁnn 3 oy »wmu_"“ o Mg"n R i
L - 4 2iy uwd ad N BEEYY) .
v Yiva 0 gi@en WOt - L9 v SRS
PR N I ~ AR IR ol Y 4 A A RANR]
PR R , P ) y ‘\l ’ ORIy A .q-.-‘-.du.. P -.- 1-lJtlI P




Wﬂhnv‘v‘hwwf'?ﬂ"wm v

Y

-3 =2 -1

The t distribution curves for v = 2, 5, and oo.

Figure 31 -- Student's-t dstribution.

- Wy @ ¥, W €y Cad oy et . -
AR LA R G E R U s e e, L AN I L . T T PR S
P AN N AN s EPAE AU
k\iﬁt&t‘- RGN \{‘-{A‘:ﬁ- N SRR SN A_‘.':.‘Ad:'niﬁi'\t' ﬂi‘) ot LA oo

P




4
[
»
1
\
L]
L)
A
'
Ld
FIGURE 15.9
) . . iogt B . P .
Operating Characteristic Curves for Single-Limit Sampling Plans Based on the Statistic
X-X
) t="""2° with a = 0.05*
K s/Vn
LS 1.00
-
-
' 0.90
LY
a 0.80
i 070
i
- [ ]
.- % 0.60
e y
- < 050
R
3
5 o04c
2
r
& z 0.30
*
: 0.20
| &
. 010
o
P
d 2.0
. x_p‘r',_)?‘pou IX o-¥"|
-.. = _——a' _—.’ S
'-: * In acceptance sampling. Xa  the X of the plan and &* - any other lot or process quality. n size of sample. The
\, lot or process is assumed to be normally distributed or approximately normally distributed. The sampling plan has only
" one acceptance limit. Source of original data: ). Neyman and B, Tobarska. “Freors of the Second Kind in Testing "Stu-
dent’s” Hypothesis.” Journal of the American Statisical Associanon, Vol. XX X1, pp. 318-26.
Ty b
o, v
W, LA
-, o
B e
W LAY
’ A
o e
. .
o
~, 4\-
.‘-, n'.'-
~ ‘.
L . . )
o Figure 32 -- Uperating characteristic curves corresponding to various sanmple o~
N sizes. From Duncan (1974). *
5
<
]
o’ 155
)
I.
.

s *n
S, P




-'rldj-,- P L RAP O A0 A X
PR _g...w o DRSS T.\..\es.....rn A .:\ﬁ......\.. N

Vo e : e R .y P, )

) .-q-<n.fﬂf\; e s -:- -,n. ..v .-41 _..,.rll\-un,-.twnlu- %' -J .t- S A\\l-‘u“.-

PN TR [N A5 3 )

YIN

e[ EJECT

AQL

l

I

I

I

l

|
|
m

- ACCLP [t
o
L

\

¥IN

EETECT =—

size n.

Figure 33 -- Frequency distribution of the sample average my, for a sample of




| L2 Bl e e AN RRe Ale AR, 40000, aty ol Bl vl tad G4 4

a4
R

v,

4
7o B

PAEASASL
)

AR

AR TR

var, m}?

I |
PEIECT -—1— Accepr —r—- re7ECT
| |

-
N

v ¢ a
[
'

Ty

o

Figure 34 -- Sampling variability of two lifts of material, one with true nean
equal to UQL(;, the other with true mean equal to UQLyp .

157

T S A AT AR AT e ( TRy
.;.A‘_'mmm;‘f:'r.f P -l'&' .f‘”i( k‘{'\r‘ "




(0 AR ol il ol ot JSh gt ot LU -gif gt gnd gl gfh o o ¥ LGRSl fob Kab,tal > AFa A Ahe A o . AV LW LW LT N G T Sl oo tad tod

<

4

AN R
RN

o« ™
[y
&

1.0 o
o

/—— .—\ l..-I )
o o oy

08 |

o L
3}
g .
S 06 |- "
o o -
v
< pR—
3] ‘.
o - S
w— R
I
o e
o4l
& ’:'Q‘
-
=
- |
o o
@ b
e s
I ol
= 02 o
[ .
-,
NN
\:,\,'

: 0 ] 1 i ] ] 1 1 ] ] | |
-3 -2 iy o / z 3
, Water content relative to Proctor opitmum

PR

Figure 35 -- Operating characteristic curve for an acceptance sampling
plan to assure the value of the mean, with double
sampling limits.

,
r
i 4
.

UL L] B
‘l‘ '

>
158 AN
) =

y

Yo A Y V‘n' N e e N N e R T T T e
h o, Ca WP e m W e
'."v.", HER, .c. R Ral " AR

R SN
" \-\-\(_'q\-’\J,-\. ‘.""'\.'\"- AR B
A n e e ot e e e e eyt AT

e




SSLFLAL .
. L R

S Rl B S WL o o A S 2l

¥ A et ats et a®d TP LA LA AL S WS v ¥ YW
Pty P\\-ﬂ--n-\hi 1(\(-;.\;.\{.(.!.& 'Tu-..\.ﬂ\)- A ..l-\--«_-.-.U\--iM

A IR L)

LYl v St

frequency distribution of x

Soil Property, x

159

fraction
defective

Lower Limit
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